แรงและการเคลื่อนที่ เกี่ยวข้องกันอย่างไร และความหมายของแรงคืออะไร

แรงและการเคลื่อนที่ (Force and Motion)

เมื่อวัตถุสองชิ้นมีปฏิกิริยาต่อกันย่อมส่งผลให้เกิด แรงและการเคลื่อนที่

ทฤษฎีของ แรงและการเคลื่อนที่

แรง (Force) คืออำนาจภายนอกที่สามารถกระทำให้วัตถุเกิดการเปลี่ยนแปลง ทั้งทางลักษณะรูปร่าง ตำแหน่งทิศทาง และการเคลื่อนที่ เป็นปฏิสัมพันธ์ (Interaction) ระหว่างวัตถุต่อวัตถุด้วยกันเอง หรือระหว่างวัตถุต่อสิ่งภายนอก ในทางวิทยาศาสตร์ แรงจึงถูกกำหนดให้เป็นปริมาณเวกเตอร์ (Vector) ที่มีทั้งขนาด (Magnitude) และทิศทาง (Direction) แรงประกอบไปด้วยแรงย่อยและแรงลัพธ์ ถ้ามีแรงมากกว่าหนึ่งแรงกระทำต่อวัตถุ แรงลัพธ์คือผลรวมของแรงย่อยทั้งหมดที่มากระทำต่อวัตถุดังกล่าว โดยมีหน่วยเป็นนิวตัน (Newton)

ปริมาณทางฟิสิกส์จำแนกออกได้ 2 ประเภท คือ

  1. ปริมาณสเกลาร์ (Scalar) คือ ปริมาณที่บ่งบอกเพียงขนาด เช่น มวล อุณหภูมิ เวลา พลังงาน ความหนาแน่น และระยะทาง
  2. ปริมาณเวกเตอร์ (Vector) คือ ปริมาณที่ต้องบ่งบอกทั้งขนาดและทิศทาง เช่น แรง โมเมนต์ การกระจัด และความเร็ว
แรงและการเคลื่อนที่,
การเล่นสกีเป็นการเคลื่อนที่ตามแรงโน้มถ่วงโลก

แรงพื้นฐานทั้ง 4 แรงในธรรมชาติ

แรงทั้งหมดในจักรวาลล้วนแล้วแต่ตั้งอยู่บนพื้นฐานของการปฏิสัมพันธ์หรือแรงพื้นฐานทั้ง 4 ในธรรมชาติ ได้แก่

  1. แรงนิวเคลียร์เข้ม (Strong Nuclear Force) คือแรงยึดเหนี่ยวอนุภาคมูลฐานและเป็นส่วนประกอบพื้นฐานของสสารหรือ “ควาร์ก” (Quark) ภายในโปรตอนและนิวตรอน เป็นแรงที่ยึดเหนี่ยวอนุภาคต่างๆภายในนิวเคลียสของอะตอม
  2. แรงนิวเคลียร์อ่อน (Weak Nuclear Force) คือแรงที่ทำหน้าที่เกี่ยวกับการสลายตัวของอนุภาคหรือ “การแผ่กัมมันตภาพรังสี”
  3. แรงแม่เหล็กไฟฟ้า (Electromagnetic Force) คือแรงที่ก่อให้เกิดการกระทำระหว่างอนุภาคที่มีประจุไฟฟ้า
  4. แรงโน้มถ่วง (Gravitational Force) คือแรงดึงดูดระหว่างวัตถุหรือสสารที่มีมวล
แรงและการเคลื่อนที่, การเคลื่อนที่, แรง, แรงโน้มถ่วง
แรงดึงดูดระหว่างดาวเคราะห์เกิดจากแรงโน้มถ่วงในดาวเคราะห์

แรงก่อให้เกิดการเคลื่อนที่ (Motion) หรือการเปลี่ยนตำแหน่งของวัตถุ โดยมีองค์ประกอบที่สำคัญ ได้แก่

  • ระยะทาง (Distance) คือระยะทางที่วัตถุเคลื่อนที่จริงตามเส้นทางทั้งหมด เป็นปริมาณสเกลาร์ มีหน่วยเป็นเมตร
  • การกระจัด (Displacement) คือระยะทางที่สั้นที่สุดหรือความยาวของเส้นตรงสมมติที่ลากจากจุดเริ่มต้นถึงจุดสิ้นสุด เป็นปริมาณเวกเตอร์ มีหน่วยเป็นเมตร
  • เวลา (Time) คือระยะเวลาที่วัตถุใช้เดินทางจากจุดหนึ่งไปยังอีกจุดหนึ่ง เป็นปริมาณสเกลาร์ มีหน่วยเป็นวินาที
  • อัตราเร็ว (Speed) คือระยะทางที่วัตถุเคลื่อนที่ได้ในหนึ่งหน่วยเวลา โดยในการเคลื่อนที่แต่ละช่วงเวลา วัตถุอาจไม่ได้เคลื่อนที่ด้วยอัตราเร็วคงที่เสมอไป อัตราเร็วเป็นปริมาณสเกลาร์ มีหน่วยเป็นเมตรต่อวินาที (m/s)
  • ความเร็ว (Velocity) คือการกระจัดของวัตถุในหนึ่งหน่วยเวลา เป็นปริมาณเวกเตอร์ มีหน่วยเป็นเมตรต่อวินาที
  • อัตราเร่ง (Magnitude of Acceleration) คืออัตราเร็วที่เปลี่ยนแปลงไปในหนึ่งหน่วยเวลา เป็นปริมาณสเกลาร์ มีหน่วยเป็นเมตรต่อวินาที2
  • ความเร่ง (Acceleration) คือความเร็วที่เปลี่ยนแปลงไปในหนึ่งหน่วยเวลา เป็นปริมาณเวกเตอร์ มีหน่วยเป็นเมตร/วินาที2
แรงและการเคลื่อนที่
เสือชีตาห์ เป็นสัตว์ที่วิ่งเร็วเป็นอันดับต้นๆ ของโลก เนื่องจากมีกล้ามเนื้อ และระบบสรีรวิทยา ที่เอื้อต่อการเป็นผู้ล่า

กฎการเคลื่อนที่ของนิวตัน (Newton’s Law of Motion)

ในปี 1687 หลังการให้นิยามต่อแรงโน้มถ่วงและบัญญัติกฎความโน้มถ่วงสากล เซอร์ ไอแซก นิวตัน (Sir Isaac Newton) นักวิทยาศาสตร์ชาวอังกฤษผู้โด่งดัง ได้ทำการค้นคว้าและบัญญัติ “กฎการเคลื่อนที่” (Three Laws of Motion) ที่สำคัญยิ่งให้กับวงการกลศาสตร์ ซึ่งเกี่ยวข้องโดยตรงกับแรงและการเคลื่อนที่ของวัตถุต่างๆ โดยกฎการเคลื่อนที่ของนิวตันประกอบไปด้วย

  1. กฎของความเฉื่อย (Law of Inertia)

เมื่อไม่มีแรงจากภายนอกมากระทำ วัตถุดังกล่าวจะคงสภาวะเดิมของการเคลื่อนที่ เช่น สภาพอยู่นิ่งกับที่หรือเคลื่อนที่ต่อไปอย่างสม่ำเสมอ

  1. กฎของความเร่ง (Law of Acceleration)

เมื่อมีแรงมากระทำต่อวัตถุ แรงนั้นจะเปลี่ยนแปลงสภาพการเคลื่อนที่ของวัตถุและทำให้วัตถุเคลื่อนที่ไปตามแนวแรง โดยความเร็วของวัตถุจะแปรผันตามแรงดังกล่าวและผกผันกับมวลของวัตถุ

  1. กฎของแรงปฏิกิริยา (Law of Action and Reaction)

เมื่อมีแรงมากระทำต่อวัตถุ วัตถุนั้นจะออกแรงโต้ตอบในทิศทางตรงกันข้ามกับแรงที่มากระทำ แรงทั้งสองจะมีขนาดเท่ากันและเกิดขึ้นพร้อมกันเสมอ

กฎการเคลื่อนที่ของนิวตันทั้ง 3 ข้อเป็นกฎกายภาพที่เกี่ยวข้องกับพฤติกรรมของสสารและการเคลื่อนที่ของวัตถุที่เป็นจริงอยู่เสมอ เป็นกฎของธรรมชาติที่มนุษย์เราไม่สามารถควบคุม ดัดแปลง หรือแก้ไขกฎแห่งความจริงเหล่านี้ได้

 ปัจจัยที่ส่งผลกระทบต่อแรงและการเคลื่อนที่

  • มวล (Mass) เป็นสมบัติของวัตถุที่ก่อให้เกิดการต้านทานต่อการเปลี่ยนแปลงสภาพและการเคลื่อนที่ของวัตถุ จากการกระทำของแรง หรือที่เรียกว่า “ความเฉื่อย” (Inertia) วัตถุทุกชนิดมีความเฉื่อย โดยวัตถุที่มีมวลมากจะส่งผลให้เกิดการเปลี่ยนแปลงการเคลื่อนที่ได้ยาก ดังนั้น วัตถุดังกล่าวจึงมีความเฉื่อยมากเมื่อเปรียบเทียบกับวัตถุที่มีมวลน้อยกว่า มวลเป็นปริมาณสเกลาร์ มีหน่วยเป็นกิโลกรัม (Kilogram)
  • น้ำหนัก (Weight) คือแรงโน้มถ่วงของโลกที่กระทำต่อวัตถุที่มีมวลซึ่งส่งผลให้วัตถุเคลื่อนที่ด้วยความเร่งคงตัว น้ำหนักเป็นปริมาณเวกเตอร์ มีหน่วยเป็นนิวตัน (Newton)

สืบค้นและเรียบเรียง
คัดคณัฐ ชื่นวงศ์อรุณ


ข้อมูลอ้างอิง

Idaho State Board of Education- https://idahoptv.org/sciencetrek/topics/force_and_motion/facts.cfm

Wired.com – https://www.wired.com/2008/09/basics-what-is-a-force/

National Geographic – https://www.nationalgeographic.com/news/2010/1/100104-isaac-newton-google-doodle-logo-apple/

ทรูปลูกปัญญา – http://www.trueplookpanya.com/learning/detail/31414

สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สสวท.) – https://www.scimath.org/lesson-physics/item/8782-2018-09-20-06-44-23

มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี – http://www.rmutphysics.com/charud/oldnews/0/288/6/newton48.pdf


เรื่องอื่นๆ ที่น่าสนใจ : แรงโน้มถ่วงของโลก

เรื่องแนะนำ

การเรืองแสงของสิ่งมีชีวิต (Bioluminescence)

การเรืองแสงของสิ่งมีชีวิต สามารถพบได้ในสิ่งมีชีวิตหลายชนิดบนโลกนี้ ไม่ว่าจะเป็นฟองน้ำ แมงกะพรุน หรือปลาน้ำลึกบางชนิด รวมไปถึงสิ่งมีชีวิตบนบกจำพวกแบคทีเรีย เห็ด และเชื้อรา ขณะที่มนุษย์นำแสงสว่างมาใช้เป็นพลังงาน รวมถึงใช้เพื่อการนำทางในยามค่ำคืน แต่ การเรืองแสงของสิ่งมีชีวิต เหล่านี้ นำแสงสว่างภายในตัวเองมาปรับใช้ในหลากหลายรูปแบบ เพื่อการดำรงชีวิตและเพื่อความอยู่รอด การเรืองแสงของสิ่งมีชีวิต (Bioluminescence) คือ การสร้างพลังงานจากปฏิกิริยาทางเคมีภายในร่างกายที่ก่อให้เกิดการปลดปล่อยพลังงานออกมาในรูปของ “แสงสว่าง” ซึ่งนับเป็นหนึ่งในกลไกสำคัญทางธรรมชาติที่น่าอัศจรรย์ใจ เนื่องจากพลังงานหรือแสงสว่างส่วนใหญ่ที่มนุษย์เรารู้จักนั้น มักก่อให้เกิดความร้อนหรือรังสีที่เป็นอันตรายต่อสิ่งมีชีวิต แต่การสร้างแสงในตนเองตามกลไกทางธรรมชาติของพืช เชื้อรา หรือ สัตว์ทั้งหลายเหล่านี้ คือ การสร้างพลังงานแสงที่เรียกว่า “แสงเย็น” (Cold Light) แสงที่ก่อให้เกิดรังสีหรือพลังงานความร้อนที่เป็นอันตรายในอัตราต่ำ กลไกของการเรืองแสงในสิ่งมีชีวิต การเรืองแสงในสิ่งมีชีวิตแต่ละชนิด เกิดขึ้นภายใต้สภาวะแวดล้อมที่แตกต่างกันและก่อให้เกิดผลลัพธ์ที่แตกต่าง ไม่ว่าจะเป็นสีของแสง ตำแหน่งของแสง ช่วงและระยะเวลา หรือแม้แต่จังหวะของการเปล่งแสง อย่างไรก็ตาม สิ่งมีชีวิตเรืองแสงส่วนใหญ่มีกลไกการผลิตแสงที่ตั้งอยู่บนพื้นฐานเดียวกัน คือ การสร้างแสงสว่างจากปฏิกิริยาชีวเคมีทั้งหลายภายในเซลล์ ซึ่งอยู่ภายใต้การควบคุมของสารเคมีที่เรียกว่า “เอนไซม์” (Enzyme) โดยมีองค์ประกอบที่สำคัญ 2 ส่วน คือสารลูซิเฟอริน (Luciferin) และเอนไซม์ลูซิเฟอเรส (Luciferase) หรือโฟโตโปรตีน […]

นวัตกรรมใหม่ช่วยสัตว์ใต้ทะเลลึกขึ้นสู่ผิวน้ำอย่างปลอดภัย

นวัตกรรมใหม่ช่วยสัตว์ใต้ทะเลลึกขึ้นสู่ผิวน้ำอย่างปลอดภัย อุปกรณ์ชิ้นนี้เป็นผลงานการประดิษฐ์ของสถาบันวิทยาศาสตร์แคลิฟอร์เนียร่วมกับพิพิธภัณฑ์สัตว์น้ำมอนเทอเรย์เบย์ ซึ่งจะช่วยในการเก็บตัวอย่างสัตว์ใต้ทะเลลึกให้พวกมันขึ้นสู่ผิวน้ำได้อย่างปลอดภัย นวัตกรรมใหม่นี้เป็นท่อแรงดันที่มีชื่อสั้นๆ ว่า SubCAS เนื่องจากการที่บรรดาสัตว์น้ำใต้ทะเลลึกเหล่านี้อาศัยอยู่ที่ระดับความลึกมากกว่า 30 เมตร การเปลี่ยนแปลงความดันขณะขึ้นสู่ผิวน้ำเมื่อนักวิทยาศาสตร์เก็บพวกมันไปยังห้องปฏิบัติการอาจกลายเป็นเรื่องอันตรายต่ออวัยวะภายในได้ ดังนั้นหลักการทำงานของ SubCAS คือช่วยลดการเปลี่ยนแปลงความดันอย่างรวดเร็ว ด้วยฟองอากาศที่ล้อมรอบกระบอกบรรจุตัวอย่าง เมื่อนักดำน้ำดำลงไปยังความลึกราว 55 เมตร พวกเขาจะนำกระบอกบรรจุตัวอย่างสอดเข้าไปในกระบอกที่ใหญ่กว่า และใส่ฟองอากาศเข้าไปให้อยู่ในช่องงว่างระหว่างสองกระบอก เพื่อสร้างห้องปรับความดันขึ้นมา ตัวอย่างสิ่งมีชีวิตใต้ทะเลลึกจะถูกบรรจุเข้าไปในกระบอกขนาดเล็ก เมื่อนักดำน้ำขึ้นสู่ผิวน้ำ ฟองอากาศจะขยายและรักษาความดันภายในกระบอกไว้ และเมื่อนักดำน้ำดำถึงระดับความลึก 30 เมตรจากผิวน้ำ พวกเขาจะค่อยๆ ปล่อยฟองอากาศออกมา กระบวนการนี้ใช้เวลาราว 2 – 3 วัน ตัวอย่างที่ถูกจับมาได้จึงจะสามารถปรับตัวเข้ากับความดันใหม่ใกล้ผิวน้ำ   อ่านเพิ่มเติม ทำไมสัตว์น้ำใต้ทะเลลึกจึงมักมีสีดำ?

ดาวเคราะห์แคระ (Dwarf Planet)

ดวงดาวในระบบสุริยะมีอยู่มากมายหลายชนิด และหนึ่งในนั้นคือ ดาวเคราะห์แคระ ดาวเคราะห์แคระ (Dwarf planets) คือดวงดาวที่มีลักษณะคล้ายดาวเคราะห์ หรือดาวเคราะห์น้อย โดยมีคุณสมบัติที่สำคัญ 4 ประการ คือ 1) โคจรรอบดวงอาทิตย์ 2) มีมวลมากพอที่ก่อให้เกิดสมดุลไฮโดรสแตติก (Hydrostatic equilibrium) จากการต้านกันระหว่างแรงโน้มถ่วงของดวงดาวและแรงที่กระทำต่อวัตถุแข็งเกร็ง (Rigid body forces) ซึ่งทำให้ดวงดาวมีรูปร่างเป็นทรงกลม หรือ ทรงกลมเกือบสมบูรณ์ 3) มีวงโคจรไม่แน่ชัด และไม่สามารถควบคุมแรงดึงดูดและวงโคจรของวัตถุต่างๆ ที่อยู่รอบวงโคจรของตัวเองได้ 4) ไม่เป็นดวงจันทร์บริวารของดาวดวงอื่น ดาวเคราะห์แคระได้รับการเสนอขึ้นโดยสหพันธ์ดาราศาสตร์สากล (International Astronomical Union หรือ IAU) ตามการจำแนกชนิดดาวเคราะห์ เมื่อวันที่ 24 สิงหาคม ปี 2006 เช่นเดียวกับการเปลี่ยนสถานะของดาวพลูโตจากดาวเคราะห์เป็นดาวเคราะห์แคระ หลังการค้นพบวัตถุแข็งและดาวเคราะห์น้อยจำนวนมากในระบบสุริยะชั้นนอก (Outer solar system) ผสานกับคุณสมบัติของดาวพลูโตที่มีวงโคจรไม่สมบูรณ์เหมือนดาวเคราะห์ดวงอื่น ซึ่งดาวพลูโตนั้นโคจรเป็นวงรีและมีบางส่วนของวงโคจรซ้อนทับกับวงโคจรของดาวเนปจูน อีกทั้ง ดาวพลูโตยังเป็นดวงดาวที่ไม่สามารถควบคุมแรงดึงดูดของตัวเองได้อีกด้วย ขณะนี้ นอกจากดาวเคราะห์ 8 […]

ข้าวเหนียว “หอมนาคา” ปลูกได้ทั้งน้ำแล้งและน้ำท่วม

ไบโอเทค สวทช. เปิดตัว ข้าวเหนียว พันธุ์ใหม่ ‘หอมนาคา’ คุณสมบัติสะเทินน้ำสะเทินบก ข้าวเหนียว เป็นตัวแทนความมั่นคงทางอาหารของพื้นที่ภาคเหนือและอีสาน เพราะเป็นอาหารหลักของคนในพื้นที่ แต่ด้วยปัจจัยของที่ตั้งและภูมิประเทศ ส่งผลให้ทุ่งนาลุ่มน้ำโขงต้องเผชิญภัยธรรมชาติทั้งอุทกภัยและความภัยแล้งสลับไปมา จึงแทบไม่เคยได้ปริมาณผลผลิตทัดเทียมพื้นที่อื่นซึ่งอุดมสมบูรณ์กว่า  สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.) โดยศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ (ไบโอเทค) ร่วมกับมหาวิทยาลัยเกษตรศาสตร์ และมหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา พัฒนา ‘ข้าวหอมนาคา’ ข้าวเหนียวพันธุ์ใหม่ที่ทนทานต่อภาวะน้ำท่วมฉับพลัน ทนแล้ง และทนโรค เปรียบเปรยได้ว่า เป็นข้าวเหนียวสะเทินน้ำสะเทินบกสายพันธุ์แรกของไทย ดร.ธีรยุทธ ตู้จินดา ผู้อำนวยการกลุ่มวิจัยเทคโนโลยีชีวภาพพืชและการจัดการแบบบูรณาการ ไบโอเทค สวทช. กล่าวว่า ปัญหาหลักของการปลูกข้าวเหนียวที่พี่น้องชาวนาต้องเผชิญคือ ข้าวล้มเพราะข้าวเหนียวพันธุ์ไทยเป็นข้าวต้นสูง เมื่อเวลาลมฝนพัดแรง ต้นข้าวมักล้มนอนแม้ยังออกรวงไม่เต็มที่ หากปีใดประสบภัยแล้ง ผลผลิตมักได้น้อย นอกจากนี้ยังต้องเผชิญกับโรคไหม้ และโรคขอบใบแห้ง ทำให้การเจริญเติบโตไม่สมบูรณ์ สิ่งเหล่านี้เป็นความทุกข์ของคนทำนา เพราะชะตาชีวิตต้องแขวนอยู่บนปัจจัยเสี่ยงที่ไม่อาจควบคุมได้ นักวิจัยไทยจึงพยายามพัฒนาสายพันธุ์ข้าวเหนียวเพื่อเอาชนะปัญหาดังกล่าวมาอย่างต่อเนื่อง ในปีที่ผ่านมา ไบโอเทค สวทช. ร่วมกับนายศรีสวัสดิ์ ขันทอง และคณะวิจัย นำความเชี่ยวชาญทางด้านเทคโนโลยีพันธุวิศวกรรม มาศึกษาและพัฒนาพันธุกรรมของข้าวเหนียวไทย เพื่อชูยีนเด่น ลดยีนด้อย ผ่านการผสมและคัดเลือกพันธุ์อย่างเหมาะสม จนได้ผลงานข้าวเหนียวสายพันธุ์ใหม่ “หอมนาคา” ที่สามารถ จมอยู่ในน้ำได้นาน 1–2 สัปดาห์ และทนทานต่อการขาดน้ำในบางระยะของการปลูกข้าว […]