การลำเลียงสารของพืช มีความสำคัญต่อพืชอย่างไร และมีโครงสร้างเป็นอย่างไร

กระบวนการลำเลียงสารของพืช

โครงสร้างและการทำงานของระบบ การลำเลียงสารของพืช ประกอบด้วยระบบท่อลำเลียง ที่ทำหน้าที่ลำขนส่งน้ำและแร่ธาตุจากรากส่งต่อไปยังส่วนต่าง ๆ ของพืช เพื่อใช้ในกระบวนการสังเคราะห์ด้วยแสง

การลำเลียงสารของพืช คือโครงสร้างและการทำงานของระบบลำเลียงน้ำและอาหารของพืช ซึ่งประกอบด้วยระบบท่อลำเลียง (Vascular Tissue System) ที่เป็นเนื้อเยื่อซึ่งเชื่อมต่อกันตลอดในลำต้น

โดยทำหน้าที่ลำเลียงน้ำและแร่ธาตุจากรากส่งต่อไปยังส่วนต่าง ๆ ของพืช เพื่อนำไปใช้ในกระบวนการสังเคราะห์ด้วยแสง (Photo Synthesis) ผลิตสารต่างๆ และน้ำตาล ส่งต่อไปยังเนื้อเยื่อส่วนต่าง ๆ ของพืช เพื่อนำไปใช้ในกิจกรรมอื่น ๆ ของเซลล์ เช่น การหายใจ การสืบพันธุ์ และการเจริญเติบโตต่อไป

การลำเลียงสารของพืช

น้ำ สารอาหารและแร่ธาตุต่าง ๆ จะถูกลำเลียงไปในรูปของสารละลาย ตั้งแต่บริเวณปลายรากหรือที่เรียกว่า “ขนราก” (Root Hair) จำนวนมากของพืช

การลำเลียงสารของพืช

ซึ่งดูดสารต่าง ๆ ขึ้นมาจากพื้นดินและนำส่งต่อไปยังระบบท่อลำเลียงหรือกลุ่มเซลล์ที่เรียกว่า “มัดท่อลำเลียง” (Vascular Bundle) ที่ประกอบด้วยเนื้อเยื่อสำคัญ 2 กลุ่ม คือ

ท่อลำเลียงน้ำและแร่ธาตุ หรือ ไซเลม” (Xylem) คือ เนื้อเยื่อที่ทำหน้าที่ลำเลียงน้ำและแร่ธาตุจากดิน ผ่านรากขึ้นสู่ลำต้นไปยังใบและปลายยอดของพืช ประกอบด้วยเวสเซล (Vessel) และเทรคีด (Tracheid) ซึ่งเป็นกลุ่มเซลล์ที่ตายแล้วเรียงต่อกัน ซึ่งจะสลายตัวไปเมื่อพืชเจริญเติบโตเต็มที่ ส่งผลให้ท่อลำเลียงหรือไซเลมมีลักษณะกลวงตลอดทั้งแนว

โดยการลำเลียงน้ำและแร่ธาตุจะมีทิศทางการลำเลียงขึ้นสู่ปลายยอดของต้นไม้เท่านั้น ไม่มีการลำเลียงลงกลับด้านล่าง เป็นระบบที่อาศัยการแพร่แบบออสโมซิส (Osmosis) ตั้งแต่ในรากและแรงดึงตามธรรมชาติ เช่น

  • แรงดันราก (Root Pressure) คือ แรงดันที่ทำให้น้ำเคลื่อนที่ต่อเนื่องกันจากรากเข้าสู่ไซเลมและต่อไปจนถึงปลายยอดของพืช เป็นแรงดันที่เกิดจากการออสโมซิสของน้ำในดิน
  • แรงคาพิลลารี (Capillary Force) คือ แรงดึงที่เกิดจากการดึงดูดระหว่างโมเลกุลของน้ำด้วยกันเอง (Cohesion) และแรงยึดติดของโมเลกุลน้ำกับพื้นผิวหรือผนังเซลล์ในท่อลำเลียง (Adhesion)
  • แรงดึงจากการคายน้ำ (Transpiration Pull) ที่ทำให้น้ำถูกดูดขึ้นไปจากราก เพื่อแทนที่ส่วนของน้ำที่พืชสูญเสียไป

การลำเลียงสารของพืช

ท่อลำเลียงอาหาร หรือ โฟลเอม” (Phloem) คือ เนื้อเยื่อที่ทำหน้าที่ลำเลียงสารอาหาร โดยเฉพาะ “น้ำตาลกลูโคส” (Glucose) ที่ได้จากกระบวนการสังเคราะห์ด้วยแสงในรูปของสารละลาย นำส่งจากใบไปยังส่วนต่าง ๆ ของพืชที่กำลังมีการเจริญเติบโต รวมถึงการนำไปเก็บสะสมไว้ที่ใบ รากและลำต้น การลำเลียงอาหารสามารถเกิดได้ในทุกทิศทาง โดยอาศัยปัจจัยต่างๆ ดังนี้

  • การแพร่ (Diffusion) คือ การลำเลียงสารผ่านเนื้อเยื่อส่วนต่าง ๆ จากเซลล์ของใบสู่เซลล์ข้างเคียงต่อกันเป็นทอด ๆ เป็นการกระจายอนุภาคของสารจากบริเวณที่มีความเข้มข้นสูงไปยังบริเวณที่มีความเข้มข้นต่ำ
  • การลำเลียงแบบใช้พลังงาน (Active Transport) คือ การลำเลียงสารผ่านเยื่อหุ้มเซลล์จากบริเวณที่สารมีความเข้มข้นต่ำไปสู่บริเวณที่มีความเข้มข้นสูง ซึ่งอาศัยพลังงานที่ได้จากการหายใจระดับเซลล์และโปรตีนตัวพาในการลำเลียง

การลำเลียงอาหารในโฟลเอมเกิดจากกลุ่มเซลล์ที่ยังมีชีวิตอยู่ และยังทำหน้าที่สร้างความแข็งแรงให้แก่ลำต้นของพืช การลำเลียงสารของพืชมีความเกี่ยวข้องกับกระบวนการต่าง ๆ มากมาย เป็นการประสานงานกันระหว่างกลุ่มเนื้อเยื่อในมัดท่อลำเลียง เพื่อนำส่งน้ำ แร่ธาตุ และสารต่าง ๆ ไปยังเนื้อเยื่อเป้าหมายของพืช

การลำเลียงสารของพืช

โครงสร้างและระบบการเรียงตัวของท่อส่งน้ำและอาหารในพืช

ราก

  • พืชใบเลี้ยงเดี่ยว : ไซเลมเรียงตัวอยู่รอบพิธ (Pit) ซึ่งเป็นเนื้อเยื่ออยู่ตรงส่วนกลางของราก ขณะที่โฟลเอมแทรกตัวอยู่ระหว่างไซเล
  • พืชใบเลี้ยงคู่ : ไซเลมเรียงตัวคล้ายดวงดาวหลายแฉก (2-5 แฉก) บริเวณกึ่งกลางของราก ส่วนโฟลเอมแทรกอยู่ระหว่างไซเลม

การลำเลียงสารของพืช

ลำต้น

  • พืชใบเลี้ยงเดี่ยว : ไซเลมและโฟลเอมอยู่รวมกันอย่างกระจัดกระจายทั่วทั้งลำต้น
  • พืชใบเลี้ยงคู่ : ไซเลมและโฟลเอมรวมตัวอยู่ด้วยกันอย่างเป็นระเบียบรอบลำต้น โดยมีโฟลเอมเรียงตัวอยู่ด้านนอกและไซเลมเรียงตัวอยู่ด้านใน มีเนื้อเยื่อแคมเบียม (Cambium) แทรกอยู่ตรงกึ่งกลางระหว่างไซเลมและโฟลเอม

  • สำหรับลำต้นพืชใบเลี้ยงคู่เนื้อแข็งหรือพืชที่มีอายุมาก โดยเฉพาะในกลุ่มของพืชยืนต้น กลุ่มเซลล์ตั้งแต่เนื้อเยื่อแคมเบียมออกไปจนถึงชั้นนอกสุด คือ ส่วนที่เรียกว่า “เปลือกไม้” ขณะที่กลุ่มเซลล์บริเวณถัดจากเนื้อเยื่อแคมเบียมเข้ามาด้านในทั้งหมด คือ ส่วนของ “เนื้อไม้” หรือไซเลม

    สืบค้นและเรียบเรียง

    คัดคณัฐ ชื่นวงศ์อรุณ และณภัทรดนัย


ข้อมูลอ้างอิง

สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี – http://secondsci.ipst.ac.th

ทรูปลูกปัญญา – https://www.trueplookpanya.com

โรงเรียนนาเชือกพิทยาสรรค์ – https://np.thai.ac


เรื่องอื่น ๆ ที่นาสนใจ : การตอบสนองของพืช (Plant Responses)

เรื่องแนะนำ

เหตุผลอันน่าประหลาดใจ ว่าทำไมหมีขั้วโลกต้องพึ่งพาน้ำแข็งทะเลเพื่ออยู่รอด

งานวิจัยชิ้นใหม่สำรวจความเชื่อมโยงชิ้นสำคัญในห่วงโซ่อาหารของเหล่า หมีขั้วโลก ทุกฤดูหนาว น้ำแข็งในทะเลอาร์กติกจะขยายตัวรอบขั้วโลก กิ่งก้านเยือกแข็งของมันแผ่ขยายไปตามแนวชายฝั่งทางเหนือ ขณะนี้ น้ำแข็งทะเลเพิ่งผ่านจุดที่ขยายตัวมากที่สุดในรอบปี และจะเริ่มหดตัวเมื่อฤดูใบไม้ผลิมาถึง นี่เป็นช่วงเวลาที่สำคัญสำหรับหมีขั้วโลก ซึ่งมีแหล่งอาหารที่เกี่ยวพันกับน้ำแข็งทะเลอย่างไม่อาจแยกขาดจากกันได้ และในช่วงหลายทศวรรษที่ผ่านมา น้ำแข็งทะเลหดตัวอย่างรวดเร็วกว่าที่เคยเป็นมา ข้อมูลจากศูนย์ข้อมูลด้านหิมะและน้ำแข็งแห่งชาติ (National Snow and Ice Data Center) ระบุว่า ในปี 2019 น้ำแข็งทะเลที่ปกคลุมอาร์กติก มีขนาดเล็กที่สุดเป็นอันดับเจ็ด นับตั้งแต่พวกเขาเริ่มเก็บข้อมูลจากดาวเทียมเมื่อ 40 ปีก่อน ในปีนี้ “[การหดตัวของน้ำแข็งทะเล] ไม่ได้สร้างสถิติใหม่ แต่สิ่งสำคัญคือแนวโน้ม” แอนดรูว์ เดโรเชอร์ (Andrew Derocher) นักวิทยาศาสตร์ด้านหมีขั้วโลกแห่งมหาวิทยาลัยแอลเบอร์ตา กล่าว “แนวโน้มเชิงลบของน้ำแข็งทะเลตลอดทุกเดือน เป็นสิ่งที่น่ากังวล” ฤดูใบไม้ผลิที่หนาวเย็นทำให้น้ำแข็งคงตัวอยู่ได้ ซึ่งทำให้หมีขั้วโลกสามารถเข้าถึงหนึ่งในอาหารโปรดอย่างแมวน้ำได้ง่ายขึ้น แต่ฤดูใบไม้ผลิที่อุ่นขึ้นทำให้เส้นทางหาอาหารที่สำคัญของพวกมันขาดหายไป “สำหรับ หมีขั้วโลก หมีตัวที่อ้วนที่สุดคือตัวที่อยู่รอด” เดโรเชอร์กล่าว หมีที่ตัวอ้วนกว่า มีโอกาสที่จะอยู่รอดในฤดูร้อนซึ่งไม่มีน้ำแข็งและไม่มีหรือแทบไม่มีแหล่งอาหาร มากกว่าตัวที่ผอม และหมีเพศเมียที่อ้วนกว่า ต้องการพลังงานเพื่อให้กำเนิดและเลี้ยงดูลูกให้มีสุขภาพดีได้โดยสมบูรณ์ “ไม่เคยมี หมีขั้วโลก ตัวไหนที่มองตัวเองในทะเลสาบที่ละลาย แล้วคิดว่านี่ฉันอ้วนเกินไปแล้วนะ” […]

ปิโตรเลียม ทรัพยากรธรรมชาติที่สำคัญทางเศรฐกิจ

มนุษย์ค้นพบ ปิโตรเลียม และใช้ประโยชน์จากทรัพยากรธรรมชาติชนิดนี้มาเป็นเวลานาน แม้ว่าที่ผ่านมา มนุษย์เราได้รับประโยชน์มากมายจากปิโตรเลียม แต่ในขณะเดียวกัน ผลจากการบริโภคพลังงานชนิดนี้ก็กำลังส่งผลกระทบต่อชีวิตมนุษย์ ปิโตรเลียม (Petroleum) คือ สารประกอบไฮโดรคาร์บอน (Hydrocarbon) ที่มีโครงสร้างอันสลับซับซ้อน เป็นสสารในธรรมชาติที่มีธาตุไฮโดรเจน (H) และคาร์บอน (C) เป็นองค์ประกอบหลัก เกิดจากการย่อยสลายของอินทรียสารที่ทับถมกันจำนวนมากในมหาสมุทร ภายใต้ความร้อนและความดันอันมหาศาลที่เกิดขึ้นตลอดระยะเวลาหลายล้านปีในชั้นหินใต้พื้นผิวโลก [ปิโตรเลียม มีรากศัพท์มาจากคำว่า “เพตรา” (Petra) ที่แปลว่า “หิน” และ “โอเลียม” (Oleum) ที่แปลว่า “น้ำมัน” ในภาษาละติน ซึ่งมีความหมายร่วมกันว่า “น้ำมันจากหิน”] แหล่งกำเนิดและกระบวนการสะสมปิโตรเลียม ปิโตรเลียม คือเชื้อเพลิงฟอสซิล (Fossil fuel) ที่เกิดขึ้นจากการทับถมของซากพืชซากสัตว์ใต้ทะเลลึกเมื่อหลายล้านปีก่อน ซึ่งเน่าเปื่อยผุพังและย่อยสลายกลายเป็นอินทรียสารที่สะสมรวมตัวกับตะกอนต่าง ๆ ทับถมกันจนเกิดชั้นตะกอนหนาแน่น ซึ่งจมตัวลงจากแรงกดทับของชั้นการสะสมต่าง ๆ และการเปลี่ยนแปลงของแผ่นเปลือกโลก ภายใต้ความดันและความร้อนที่สูงจัด อินทรียวัตถุเหล่านี้ถูกแปรสภาพกลายเป็นสารประกอบที่เรียกว่า “คีโรเจน” (Kerogen) ปะปนอยู่ร่วมกับเศษหินดินทรายหรือ “หินต้นกำเนิด” (Source Rock) จนกระทั่งเกิดการแปรสภาพอีกครั้ง […]

เสือชีตาห์คงศีรษะได้อย่างไรขณะวิ่งด้วยความเร็ว?

เสือชีตาห์ คงศีรษะได้อย่างไรขณะวิ่งด้วยความเร็ว? เป็นที่รู้กันดีว่า เสือชีตาห์ คือจ้าวแห่งความเร็ว แต่นอกเหนือจากรูปร่างเพรียวลม กล้ามเนื้ออันแข็งแรงแล้ว ยังมีบางสิ่งบางอย่างที่สำคัญอีกซึ่งร่างกายของมันต้องการอย่างมากเมื่อต้องวิ่งด้วยความเร็ว ผลการศึกษาใหม่ที่เผยแพร่เมื่อวันที่ 2 กุมภาพันธ์ 2018 ในวารสาร Scientific Reports แสดงให้เห็นว่าหูชั้นในของเสือชีตาห์นั้นมีส่วนช่วยให้การล่าเหยื่อของมันมีประสิทธิภาพมากยิ่งขึ้น และการวิจัยครั้งนี้ยังเป็นครั้งแรกที่ทีมวิจัยทำการวิเคราะห์หูชั้นในของสัตว์ในวงศ์แมวใหญ่   ว่าด้วยเรื่องหู หากคุณมองภาพสโลวโมชั่นของเสือชีตาห์ขณะกำลังวิ่ง จะเห็นได้ว่ามันสามารถคงหัวของมันให้นิ่งอยู่ได้ ซึ่งช่วยให้ดวงตาของมันจับจ้องไปที่เหยื่ออย่างไม่ให้คลาดสายตาระหว่างการล่า เพื่อที่จะเรียนรู้เกี่ยวกับโครงสร้างของกระดูกเสือชีตาห์ว่ามีส่วนช่วยในเรื่องนี้อย่างไร Camille Grohe มุ่งเป้าไปที่การศึกษาหูชั้นใน หูชั้นในเป็นอวัยวะสำคัญที่ช่วยรักษาสมดุลของร่างกาย มันประกอบไปด้วยช่องว่างที่บรรจุของเหลวและเซลล์ขนที่ทำหน้าที่เป็นเซนเซอร์รับการเคลื่อนไหวของศีรษะ ด้วยภาพถ่ายความละเอียดสูง Grohe และทีมงานของเขาสแกนกระโหลกศีรษะจำนวน 21 กระโหลก ในจำนวนนี้บางกระโหลกเป็นของสัตว์สายพันธุ์อื่นในวงศ์แมวใหญ่ มีจำนวน 7 กระโหลกที่เป็นของเสือชีตาห์ นอกจากนั้นพวกเขายังสแกนกระโหลกศีรษะของเสือชีตาห์ที่สูญพันธุ์ไปแล้วในอดีตด้วย เพื่อหาดูว่าหูชั้นในของพวกมันมีวิวัฒนาการอย่างไร ผลการตรวจสอบพวกเขาพบว่าหูชั้นในของเสือชีตาห์ไม่ได้เหมือนกับสัตว์อื่นๆ ในวงศ์แมวใหญ่ ด้วยระบบการรักษาสมดุลที่มีขนาดใหญ่ของมัน และช่องภายในหูที่ยาวกว่าส่งผลให้ความสามารถในการคงศีรษะและดวงตาของมันให้อยู่นิ่งมีมากกว่าเสืออื่นๆ “กายวิภาคภายในหูของมันสะท้อนให้เห็นถึงการตอบสนองของร่างกายต่อการเคลื่อนที่ด้วยความเร็วที่มากขึ้น” John Flynn ผู้ร่วมการวิจัยกล่าว ในระหว่างการแถลงข่าวผลการค้นพบ โดยที่สำคัญก็คือลักษณะเหล่านี้ไม่ถูกพบในเสือชีตาห์ที่สูญพันธุ์ไปแล้ว นั่นหมายความว่าความพิเศษนี้เพิ่งจะถูกพัฒนาขึ้นไม่นาน ในฐานะของสัตว์บกที่มีความรวดเร็วมากที่สุดในโลก ร่างกายของมันถูกสร้างเพื่อการวิ่งอย่างแท้จริง ด้วยน้ำหนักที่เบา กระดูกสันหลังที่ยาวและมีความยึดหยุ่น เอื้อให้มันสามารถทำความเร็วจาก […]

กระแสน้ำในมหาสมุทร การไหลเวียนแห่งชีวิต

กระแสน้ำในมหาสมุทร ได้พัดพาสรรพชีวิตในท้องทะเลให้หมุนเวียนไปยังที่ต่างๆ ของโลก และยังเป็นปัจจัยสำคัญสำหรับสภาพภูมิอากาศที่ส่งอิทธิพลถึงพื้นที่ต่างๆ บนโลก กระแสน้ำในมหาสมุทร (Ocean Currents) มีทิศทางการไหลเวียนและหลักการในการเคลื่อนที่เช่นเดียวกับกระแสลมในชั้นบรรยากาศ หากแต่การไหลเวียนของกระแสน้ำนั้นมีภูมิประเทศหรือพื้นแผ่นดินที่ครอบคลุมราว 1 ใน 3 ของพื้นผิวโลกเป็นอุปสรรคขวางกั้น ส่งผลให้กระแสน้ำในมหาสมุทรไม่ปรากฏรูปแบบการไหลเวียนที่ชัดเจนเหมือนดังการเคลื่อนที่ของกระแสลมในชั้นบรรยากาศโลก ปัจจัยหลักที่ส่งผลต่อทิศทางและลักษณะการไหลเวียนของกระแสน้ำในมหาสมุทรทั่วโลก ได้แก่ แรงโน้มถ่วงของโลก (Gravity) และลมประจำถิ่นหรือกระแสลมจากการเคลื่อนที่หมุนรอบตัวเองของโลก (Coriolis Effect) ซึ่งส่งผลต่อการไหลของน้ำบริเวณพื้นผิวมหาสมุทร โดยเฉพาะอิทธิพลจากลมสินค้า (Trade Winds) ทำให้กระแสน้ำในมหาสมุทรบริเวณใกล้เส้นศูนย์สูตรเคลื่อนที่ไปทางทิศตะวันตก และกระแสน้ำในมหาสมุทรแทบขั้วโลกเคลื่อนที่ไปทางทิศตะวันออก นอกจากนี้ยังส่งผลให้การไหลเวียนของกระแสน้ำในมหาสมุทรทางฝั่งซีกโลกเหนือมีทิศทางการเคลื่อนที่หมุนไปตามเข็มนาฬิกา และในทางกลับกัน กระแสน้ำในมหาสมุทรทางฝั่งซีกโลกใต้ จะมีทิศทางการเคลื่อนที่โดยหมุนย้อนทวนเข็มนาฬิกานั่นเอง ในขณะเดียวกัน ประกอบกับรูปร่างลักษณะของโลก ซึ่งเป็นทรงกลมสมบูรณ์ จึงส่งผลให้น้ำทะเลในแต่ละบริเวณของมหาสมุทรได้รับความร้อนและแสงแดดไม่เท่ากัน พลังงานจากดวงอาทิตย์จะตกกระทบบริเวณเส้นศูนย์สูตรมากกว่าบริเวณอื่น ๆ ดังนั้น น้ำทะเลบริเวณเส้นศูนย์สูตรจึงมีอุณหภูมิสูงกว่า ส่งผลให้โมเลกุลของน้ำเกิดการแยกตัวออกห่างจากกัน น้ำทะเลที่มีอุณหภูมิสูงจึงลอยตัวขึ้นเกิดเป็น “กระแสน้ำอุ่น” (Warm Currents) ในขณะที่บริเวณขั้วโลก น้ำทะเลมีอุณหภูมิต่ำ มีความหนาแน่นสูงจึงเกิดการจมตัวลงเกิดเป็น “กระแสน้ำเย็น” (Cold Currents) ความแตกต่างด้านอุณหภูมิและความหนาแน่นของน้ำส่งผลให้เกิดการไหลเวียนหรือการเข้าแทนที่ของกระแสน้ำตามธรรมชาติที่เรียกว่า “แถบสายพานยักษ์” หรือ “สายพานแห่งมหาสมุทร” […]