พันธะเคมี สามารถจำแนกเป็นกี่ประเภท แต่ละประเภทมีความแตกต่างกันอย่างไร

พันธะเคมี (Chemical Bonding)

พันธะเคมี (Chemical Bonding) คือ แรงยึดเหนี่ยวที่เกิดขึ้นระหว่างอนุภาคมูลฐานหรืออะตอม (Atom) ซึ่งเป็นการดึงดูดเข้าหากัน เพื่อสร้างเสถียรภาพในระดับโมเลกุล จนเกิดเป็นสสารหรือสารประกอบที่มีโครงสร้างขนาดใหญ่และมีความซับซ้อนมากขึ้นในธรรมชาติ ไม่ว่าจะเป็นน้ำ อากาศ พื้นดิน ก้อนหิน ต้นไม้ รวมไปถึงเนื้อเยื่อและร่างกายของสิ่งมีชีวิต ซึ่งทุกสสารในจักรวาลล้วนถูกสร้างขึ้นจากการรวมตัวกันของอนุภาคพื้นฐานขนาดเล็กเหล่านี้

พันธะเคมี เป็นแรงดึงดูดที่เกิดขึ้นจากความไม่เสถียรของอะตอมหรือธาตุต่าง ๆ ในธรรมชาติ ซึ่งกว่า 90 ธาตุที่พบในธรรมชาติ มีเพียงธาตุในหมู่ VIIIA หรือก๊าซเฉื่อย (Inert Gas) เท่านั้นที่สามารถคงอยู่ในรูปของอะตอมอิสระ  จากการมีอิเล็กตรอนวงนอกสุดเต็มตามจำนวนในแต่ละระดับชั้นของพลังงาน หรือ มีเวเลนซ์อิเล็กตรอน (Valence Electron) ครบ 8 ตัว ทำให้โครงสร้างของอะตอมมีความเสถียรในตัวเองสูง

อ่านเพิ่มเติม เรื่องตารางธาตุ

พันธะเคมี, อะตอม, การสร้างพันธะเคมี, วาเลนซ์อิเล็กตรอน
โครงสร้างอะตอมของอาร์กอน

ดังนั้น อะตอมของธาตุอื่น ๆ ไม่ว่าจะเป็นคาร์บอน (C) ไนโตรเจน (N) หรือออกซิเจน (O) ต่างต้องการจับกลุ่มรวมตัวกัน เพื่อทำให้โครงสร้างของตนมีเวเลนต์อิเล็กตรอนครบ 8 ตัว ซึ่งนักวิทยาศาสตร์เรียกกฎของการรวมตัวนี้ว่า กฎออกเตต” (Octet Rule) โดยมีอะตอมของธาตุไฮโดรเจน (H) เป็นข้อยกเว้นเพียงหนึ่งเดียวที่ต้องการเวเลนต์อิเล็กตรอนเพียง 2 ตัว เพื่อสร้างเสถียรภาพให้ตนเอง

ชนิดของพันธะเคมี

พันธะเคมีสามารถเกิดขึ้นได้ในหลายลักษณะ ส่งผลให้โมเลกุลของสสารมีคุณสมบัติแตกต่างกันออกไป โดยพันธะเคมีสามารถจำแนกออกเป็น 3 ชนิด ได้แก่

พันธะไอออนิก (Ionic Bond)

คือ พันธะที่เกิดขึ้นระหว่างอะตอมซึ่งมีประจุขั้วตรงข้าม จากแรงดึงดูดทางไฟฟ้าระหว่างประจุบวก (Cation) และประจุลบ (Anion) ซึ่งยึดเหนี่ยวอะตอมเข้าหากัน เป็นพันธะที่เกิดขึ้นจากการเคลื่อนย้ายอิเล็กตรอนวงนอกสุดระหว่างอะตอม เพื่อทำให้เวเลนต์อิเล็กตรอนของทั้งคู่มีจำนวนเต็มตามกฎออกเตต โดยส่วนใหญ่ พันธะไอออนิก มักเกิดขึ้นระหว่างอะตอมของโลหะ (Metals) กับอโลหะ (Nonmetals) เนื่องจากอะตอมของกลุ่มธาตุโลหะ มักมีค่าพลังงานไอออไนเซชัน (Ionization Energy) หรือค่าความสามารถในการยึดเหนี่ยวอิเล็กตรอนไว้ต่ำ ดังนั้น โลหะจึงมีแนวโน้มที่จะสูญเสียอิเล็กตรอนให้อะตอมกลุ่มอโลหะสูง อย่างเช่น การเกิดของสารประกอบโซเดียมคลอไรด์ (NaCl) หรือเกลือ ซึ่งเกิดจากอะตอมของโซเดียม (Na) ที่สูญเสียอิเล็กตรอนวงนอกสุด 1 ตัว ให้แก่อะตอมของคลอรีน (Cl) ที่มีอิเล็กตรอนวงนอกสุด 7 ตัว ซึ่งการรวมตัวกัน ทำให้อะตอมของทั้งคู่มีจำนวนอิเล็กตรอนวงนอกสุดครบ 8 ตัว ตามกฎออกเตตนั่นเอง

พันธะเคมี, พันธะไอออนิก, สารประกอบไอออนิก

คุณสมบัติของสารประกอบไอออนิก

อะตอมที่รวมตัวกันด้วยพันธะไอออนิก มีชื่อเรียกว่า สารประกอบไอออนิกเป็นสารประกอบมีขั้ว โดยมีคุณสมบัติในการนำไฟฟ้าได้ต่ำ เมื่ออยู่ในสถานะของแข็ง แต่จะนำไฟฟ้าได้ดี เมื่ออยู่ในรูปของสารละลาย เป็นสารประกอบที่มีจุดหลอมเหลวและจุดเดือดสูง

พันธะโคเวเลนต์ (Covalent Bond) คือ พันธะที่เกิดขึ้นจากการใช้เวเลนต์อิเล็กตรอน 1 คู่หรือมากกว่าร่วมกันระหว่างอะตอม ซึ่งโดยส่วนใหญ่ มักเกิดขึ้นจากการรวมตัวกันของอะตอมหรือธาตุในกลุ่มอโลหะ ซึ่งมีพลังงานไอออไนเซชันหรือแรงยึดเหนี่ยวระหว่างอิเล็กตรอนสูง ทำให้การจับคู่กันกลายเป็นการแบ่งปันอิเล็กตรอนร่วมกัน โดยไม่มีอะตอมตัวใดสูญเสียอิเล็กตรอนไปอย่างถาวร

พันธะโคเวเลนต์ สามารถจำแนกออกได้อีก 3 ลักษณะ ตามจำนวนคู่ของอิเล็กตรอนที่ใช้ร่วมกัน คือ

  • พันธะเดี่ยว (Single Bond) เกิดจากการใช้อิเล็กตรอนร่วมกัน 1 คู่ เช่น น้ำ (H2O) แอมโมเนีย (NH3) และมีเทน (CH4) เป็นต้น
  • พันธะคู่ (Double Bond) เกิดจากการใช้อิเล็กตรอนร่วมกัน 2 คู่ เช่น ก๊าซออกซิเจน (O2) คาร์บอนไดออกไซด์ (CO2) และอีเทน (C2H4) เป็นต้น
  • พันธะสาม (Triple Bond) เกิดจากการใช้อิเล็กตรอนร่วมกัน 3 คู่ เช่น ก๊าซไนโตรเจน (N2) ก๊าซอะเซทิลีน (C2H2) และคาร์บอนมอนออกไซด์ (CO) เป็นต้น

ดังนั้น ในธรรมชาติ ธาตุในกลุ่มอโลหะส่วนใหญ่ จึงไม่สามารถอยู่เป็นอะตอมอิสระได้ จำเป็นต้องจับกลุ่มรวมตัวกันเพื่อสร้างโมเลกุลที่มีความเสถียรในตนเอง

พันธะโลหะ (Metallic Bond)

คือ พันธะที่เกิดขึ้นภายในอะตอมของธาตุในกลุ่มโลหะ เกิดเป็นแรงยึดเหนี่ยวที่ทำให้อะตอมของกลุ่มโลหะอยู่ร่วมกันเป็นกลุ่มก้อน จากการแบ่งปันอิเล็กตรอนวงนอกสุดร่วมกัน โดยที่อิเล็กตรอนดังกล่าว ไม่ได้ถูกรวมเข้าไปเป็นส่วนหนึ่งของอะตอมใดอะตอมหนึ่งโดยเฉพาะ ซึ่งทำให้ภายในสสารหรือก้อนโลหะดังกล่าวเกิดการเคลื่อนที่ของอิเล็กตรอนอยู่ตลอดเวลา

พันธะเคมี, พันธะโลหะ

ยกตัวอย่างเช่น ก้อนเหล็ก (Fe) ซึ่งประกอบขึ้นจากอะตอมของโลหะจำนวนมาก โดยที่ทุกอะตอมของโลหะจะอยู่เรียงชิดติดกันอย่างต่อเนื่อง โดยไม่มีการกำหนดตัวเลขหรือจำนวนอะตอมในหนึ่งโมเลกุล ซึ่งส่งผลให้โลหะไม่มีสูตรโมเลกุลที่แน่นอน มีเพียงสัญลักษณ์ของธาตุหรือสูตรอย่างง่ายที่ใช้แทนโมเลกุลของสารดังกล่าว

 สมบัติของโลหะ

โลหะนำไฟฟ้าและนำความร้อนได้ดี มีจุดหลอมเหลวสูงและสามารถตีแผ่เป็นแผ่นหรือถูกยืดขยายได้ง่ายโดยไม่แตกหัก เนื่องจากมีกลุ่มเวเลนต์อิเล็กตรอน ทำหน้าที่ยึดอนุภาคให้เรียงร้อยต่อกันอย่างเหนี่ยวแน่น นอกจากนี้ โลหะยังมีผิวเป็นมันวาว จากการเคลื่อนที่โดยอิสระของกลุ่มอิเล็กตรอนที่ก่อให้เกิดปฏิกิริยาต่อแสงไฟที่สะท้อนกลับมา

สืบค้นและเรียบเรียง
คัดคณัฐ ชื่นวงศ์อรุณ


ข้อมูลอ้างอิง

จุฬาลงกรณ์มหาวิทยาลัย – http://www.curadio.chula.ac.th/Images/Class-Onair/ch/2018/2018-11-23-2521-d193790.pdf

สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สสวท.) – https://www.scimath.org/lesson-chemistry/item/7097-2017-06-04-03-08-02

ทรูปลูกปัญญา – https://www.trueplookpanya.com/knowledge/content/66296/-sciche-sci-

มหาวิทยาลัยมหิดล – https://il.mahidol.ac.th/e-media/ap-chemistry1/chemical_bonding/ionic.htm


เรื่องอื่นๆ ที่น่าสนใจ: ความเป็นกรดและเบสของสารละลาย

เรื่องแนะนำ

การแพร่ของสาร (Diffusion)

การแพร่ของสาร (Diffusion) คือการเคลื่อนที่ของโมเลกุลหรือการกระจายตัวของอนุภาคภายในสสาร จากบริเวณที่มีความเข้มข้นสูงไปยังบริเวณที่มีความเข้มข้นต่ำ โดยอาศัยพลังงานจลน์ (Kinetic Energy) ของโมเลกุลหรือไอออนของสาร ให้เกิดการกระจายตัวอย่างสม่ำเสมอ เพื่อสร้างสมดุลให้ทั้งสองบริเวณมีความเข้มข้นของสารเท่ากันหรือที่เรียกว่า “สมดุลของการแพร่” (Diffusion Equilibrium) โดยการแพร่นั้นเกิดขึ้นได้ในทุกสถานะของสสาร ทั้งของแข็ง ของเหลว และก๊าซ ในชีวิตประจำวันของเรามีตัวอย่างของกระบวนการแพร่เกิดขึ้นมากมาย เช่น การเติมน้ำตาลลงในกาแฟ การแพร่กระจายของกลิ่นน้ำหอม การฉีดพ่นยากันยุง การแช่อิ่มผลไม้ หรือแม้แต่การจุดธูปบูชาพระ เป็นต้น  ประเภทของการแพร่ 1. การแพร่ธรรมดา (Simple Diffusion) คือการเคลื่อนที่ของสาร โดยไม่อาศัยตัวพาหรือตัวช่วยขนส่ง (Carrier) ใดๆ เช่น การแพร่ของผงด่างทับทิมในน้ำ จนทำให้น้ำมีสีม่วงแดงทั่วทั้งภาชนะ การได้กลิ่นผงแป้ง หรือการได้กลิ่นน้ำหอม เป็นต้น 2.การแพร่โดยอาศัยตัวพา (Facilitated Diffusion) ซึ่งเกิดขึ้นเฉพาะในเซลล์ของสิ่งมีชีวิตเท่านั้น คือการเคลื่อนที่ของสารบางชนิดที่ไม่สามารถแพร่ผ่านเยื่อหุ้มเซลล์ได้โดยตรง จึงต้องอาศัยโปรตีนตัวพา (Protein Carrier) ที่ฝังอยู่บริเวณเยื่อหุ้มเซลล์ทำหน้าที่รับส่งโมเลกุลของสารเข้า-ออก โดยมีทิศทางการเคลื่อนที่จากบริเวณที่มีความเข้มข้นสูงไปยังบริเวณที่มีความเข้มข้นต่ำ เช่น การลำเลียงสารที่เซลล์ตับและเซลล์บุผิวลำไส้เล็ก หรือการเคลื่อนที่ของน้ำตาลกลูโคสเข้าสู่เซลล์กล้ามเนื้อ เป็นต้น  ปัจจัยที่มีผลต่อการแพร่ […]

เหตุผล 4 ประการที่ทําให้อีโบลายังไม่หยุดระบาด

(ภาพปก) เจ้าหน้าที่ด้านสุขภาพได้รับการฉีดสเปรย์น้ำคลอรีน หลังจากนำส่งผู้ป่วยที่คาดว่าติดเชื้อ อีโบลา ไปยังรถพยาบาล ภาพถ่ายโดย NICHOLE SOBECKI ในขณะที่การระบาดของไวรัสโควิด-19 ยังคงดำเนินอยู่ ก็ได้เกิดการระบาดของเชื้อไวรัส อีโบลา ในรอบใหม่ที่คองโกอีกครั้ง นี่คือเหตุผล 4 ประการที่โลกยังไม่สามารถหยุดเชื้อนี้ได้ เมื่อวันที่ 2 มิถุนายน องค์การอนามัยโลกได้ออกประกาศว่า สาธารณรัฐประชาธิปไตยคองโก ประเทศในภูมิภาคแอฟริกากลางการเกิดการระบาดของเชื้อไวรัสอีโบลาอีกครั้ง โดยมีผู้ติดเชื้อ 6 คน มีผู้เสียชีวิต 4 คน และยังรักษาตัวอยู่อีก 2 คน และมีความเป็นไปได้ถึงการแพร่ระบาดครั้งใหม่ในวงกว้างจึงได้มีการเฝ้าระวังสถานการณ์อย่างใกล้ชิด ย้อนกลับไปเมื่อวันที่ 17 กรกฎาคม 2019 องค์การอนามัยโลกได้ประกาศภาวะวิกฤตโรคการระบาดของเชื้ออีโบลา สาธารณรัฐประชาธิปไตยคองโกว่าเป็น ภาวะฉุกเฉินด้านสาธารณสุขระหว่างประเทศ แล้ว โดยมีผู้เสียชีวิตในคองโกมากราว 1,600 คน โดยในระหว่างปี 2014-2016 โลกทั้งโลกต่างจับจ้องและมีความกังวลในพื้นที่แอฟริกาตะวันตก เนื่องจาก การระบาดของเชื้ออีโบลา ที่ทำให้มีผู้เสียชีวิตกว่า 11,000 คน หลังจากนั้นในปี 2018 ได้มีการแพร่ระบาดครั้งที่สอง ซึ่งเริ่มขึ้นในเดือนสิงหาคม 2018 ในจังหวัดคิวูเหนือ […]