รางวัลโนเบล, แบตเตอรี ลิเทียม -ไอออน, นวัตกรรมเปลี่ยนวิถีมนุษย์ - NGthai.com

รางวัลโนเบล, แบตเตอรีลิเทียมไอออน, นวัตกรรมเปลี่ยนวิถีมนุษย์

ภาพวาด จอห์น บี. กูดีนัฟ  (John B. Goodenough) เอ็ม. สแตนลีย์ วิตติงแฮม (M. Stanley Whittingham) และ อากิระ โยชิโนะ (Akira Yoshino) ผู้ได้รับรางวัลโนเบลสาขาเคมี ประจำปี 2019 โดย Niklas Elmehed ขอบคุณภาพจาก https://www.nobelprize.org/


รางวัลโนเบลสาขาเคมีปี 2019 ตกเป็นของบรรดานักวิทยาศาสตร์ที่คิดค้นแบตเตอรี ลิเทียม -ไอออน ที่โลกให้ความสนใจ เนื่องจากเป็นนวัตกรรมที่อยู่ใกล้ชิด และเปลี่ยนวิถีชีวิตมนุษย์ไปตลอดกาล

รางวัลโนเบล เป็นรางวัลประจำปีที่ยกย่องเชิดชูความสำเร็จทางสติปัญญาอันโดดเด่นของมนุษยชาติ ได้รับการยอมรับจากชาวโลกว่าเป็นรางวัลอันทรงเกียรติสูงสุด ที่จะมอบให้แก่ผู้สร้างผลงานเป็นที่ยกย่องใน 6 สาขา ได้แก่ ฟิสิกส์ เคมี วรรณกรรม สรีรวิทยาหรือการแพทย์ การส่งเสริมสันติภาพ และเศรษฐศาสตร์

เมื่อวันที่ 9 ตุลาคม ที่ผ่านมา (ตามเวลาท้องถิ่นในสวีเดน) ได้มีการประกาศรางวัลโนเบลสาขาเคมี ประจำปี 2019 โดยราชบัณฑิตสภาด้านวิทยาศาสตร์แห่งสวีเดน โดยผู้ที่ได้รับรางวัลในสาขานี้มีอยู่ 3 คน คือ เอ็ม. สแตนลีย์ วิตติงแฮม (M. Stanley Whittingham) จอห์น บี. กูดีนัฟ  (John B. Goodenough) และ อากิระ โยชิโนะ (Akira Yoshino)

ผลการประกาศรางวัลในครั้งนี้ได้รับความสนใจจากชาวโลก เพราะนักวิทยาศาสตร์ทั้ง 3 ท่านได้รับรางวัลจากผลงานพัฒนา แบตเตอรี ลิเธียม -ไอออน ซึ่งเป็นแหล่งพลังงานไฟฟ้าที่สามารถเติมพลังงาน หรือชาร์จไฟเข้าไปใหม่ได้ อันเป็นนวัตกรรมที่ใกล้ตัวชาวโลก และเปลี่ยนโลกใบนี้ไปทั้งใบ ดังที่คณะกรรมการผู้ตัดสินรางวัลให้ความเห็นว่า

พวกเขาได้สร้างโลกที่ชาร์จพลังงานใหม่ได้

การพัฒนาแบตเตอรีลิเทียม-ไอออน ที่มีน้ำหนักเบาและเก็บพลังงานไฟฟ้าได้อย่างมีประสิทธิภาพ ได้นำเอาไปใช้ในทุกสิ่งทุกอย่าง นับตั้งแต่โทรศัพท์มือถือ คอมพิวเตอร์โน้ตบุ๊กพกพา และรถยนต์พลังงานไฟฟ้า รวมไปถึงสามารถเป็นแหล่งเก็บรักษาพลังงานไฟฟ้าจากแสงอาทิตย์และพลังงานลม (พลังงานที่สามารถนำกลับมาใช้ใหม่ได้) ทำให้สังคมที่ปลอดการใช้พลังงานฟอสซิลสามารถเป็นไปได้

นั่นหมายความว่าพลังงานแบตเตอรรีลิเทียม-ไอออนจะกลายเป็นความหวังสำคัญที่จะช่วยบรรเทาปัญหาการเปลี่ยนแปลงภูมิอากาศ ซึ่งเกิดจากการใช้พลังงานฟอสซิล

ลิเทียม
แบตเตอรีโทรศัพท์มือถือที่เราใช้กันอย่างแพร่หลายในทุกวันนี้คือแบตเตอรีประเภทลิเทียม-ไอออน ขอบคุณภาพจาก https://en.wikipedia.org/wiki/Lithium-ion_battery

เอ็ม. สแตนลีย์ วิตติงแฮม ปัจจุบันอายุ 77 ปี เป็นศาสตราจารย์อยู่ที่มหาวิทยาลัยบิงแฮมตัน มหาวิทยาลัยของรัฐที่นิวยอร์ก สหรัฐอเมริกา โดยเขาหวังมาตลอดว่าเทคโนโลยีแบตเตอรีลิเทียม-ไอออนจะต้องเติบโต “แต่ไม่เคยคิดว่าจะเติบโตมาได้ขนาดนี้ เราไม่เคยจินตนาการเลยว่ามันจะแพร่หลายในสิ่งที่เรียกว่าไอโฟน (สมาร์ตโฟน)”

ด้าน จอห์น บี. กูดีนัฟ ปัจจุบันอายุ 97 ปี เป็นศาสตราจารย์อยู่ที่มหาวิทยาลัยเทกซัส ออสติน เขากลายเป็นผู้ได้รับรางวัลโนเบลที่มีอายุมากที่สุด แต่ยังคงทำงานวิจัยอยู่

ส่วนอากิระ โยชิโนะ นั้นสังกัดอยู่องค์กร Asahi Kasei Corporation และเป็นศาสตราจารย์ที่มหาวิทยาลัย Meijo University ณ เมืองนาโกยา ประเทศญี่ปุ่น หลังจากได้รับรางวัล เขากล่าวว่า เขารู้สึกยินดีที่เทคโนโลยีนี้สามารถช่วยแก้ปัญหาเรื่องการเปลี่ยนแปลงภูมิอากาศ และเรียกแบตเตอรีลิเทียม-ไอออนว่าเป็นแบตเตอรีที่ “เหมาะสมในสังคมที่ยั่งยืน”

ลิเทียม, รถยนต์ไฟฟ้า
แบตเตอรีลิเทียม-ไอออนเป็นส่วนประกอบสำคัญของรถยนต์ไฟฟ้า ที่จะเข้ามามีบทบาทมากขึ้นในวิถีชีวิตมนุษย์ในอนาคต

กว่าจะมาเป็นแบตเตอรีที่ชาร์จไฟได้

อันที่จริงแล้ว แบตเตอรีที่สามารถชาร์ตไฟได้นั้นเริ่มมีตั้งแต่ปี 1859 เป็นแบตเตอรี่ที่ทำจากตะกั่ว-กรด (lead–acid battery) ซึ่งยังคงใช้ในการจุดพลังงานให้กับรถยนต์ประเภทเครื่องดีเซลและเบนซินจนถึงทุกวันนี้ แต่ในช่วงเวลานั้นยังมีขนาดและน้ำหนักที่ใหญ่เทอะทะ

ต่อมาในปี 1899 ได้มีการประดิษฐ์แบตเตอรี่ประเภทนิกเกิล-แคดเมียม (Nickel-Cadmium) ซึ่งมีประสิทธิภาพที่ด้อยกว่า แต่มีขนาดที่พอเหมาะมากขึ้น

จุดเปลี่ยนแรกในการพัฒนาแบตเตอรีลิเทียม-ไอออน คือการเกิดวิกฤตน้ำมันในช่วงทศวรรษที่ 1970 ในประเทศแถบอาหรับ ที่ทำให้บรรดานักวิทยาศาสตร์ต่างหาหนทางที่ไม่พึ่งพาพลังงานฟอสซิล เอ็ม สแตนลีย์ วิตติงแฮม ซึ่งในขณะนั้นทำงานอยู่ที่บริษัทน้ำมันได้คิดหาวิธีการเก็บพลังงานที่สามารถทดแทนได้ และพลังงานสำหรับรถยนต์ไฟฟ้า

วิตติงแฮมจึงเริ่มศึกษาตัวนำยิ่งยวด (Super Conductor) จนออกมาเป็น ลิเทียม-ไอออน แหล่งเก็บพลังงานไฟฟ้าที่ทำมาจากแผ่นไทเทเนียมดิซัลไฟด์ และโลหะลีเทียม เกิดเป็นแบตเตอรีชาร์จไฟซ้ำได้ที่มีขนาดแรงดันไฟฟ้า 2 โวลต์ โดยผลงานงานของวิตติงแฮมถือเป็นแบตเตอรีลิเทียม-ไอออนรุ่นแรก ซึ่งยังมีอุปสรรคสำคัญคือ โลหะลีเทียมนั้นไวต่อปฏิกิริยาจนสามารถเกิดระเบิดขึ้นได้ง่าย

ลิเทียม
กูดีนัฟเริ่มใช้โคบอลต์ออกไซด์ในแคโทดของแบตเตอรีลิเทียม ซึ่งทำให้แบตเตอรีลิเทียมไอออนมีพลังงานไฟฟ้ามากขึ้น ขอบคุณภาพจาก https://www.nobelprize.org/prizes/chemistry/2019/popular-information

จอห์น บี. กูดีนัฟ ได้เข้ามาสานต่องานจากวิตติงแฮม เขามีความคิดว่า แคโทด (บริเวณด้านที่เกิดการรับอิเล็กตรอนจากปฏิกิริยาไฟฟ้าเคมี) จะมีประสิทธิภาพมากขึ้นถ้าแบตเตอรีทำจากออกไซด์ของโลหะ (metal oxide) แทนการใช้ซัลไฟด์โลหะ (metal sulphide) จนในปี 1980 เขาสามารถแสดงให้เห็นว่า การใช้โคบอลต์ออกไซด์ (cobalt oxide) ซึ่งมีโครงสร้างคล้ายกับไทเทเนียมดิซัลไฟด์ เข้าไปสอดตัวกับลิเทียม-ไอออน สามารถส่งผลให้มีการปล่อยกระแสไฟไฟฟ้าได้มากถึง 4 โวลต์ (เป็นจำนวนสองเท่าที่วิตติงแฮมเคยทำเอาไว้) เป็นการค้นพบอันสำคัญที่ทำให้แบตเตอรีมีพลังงานได้มากขึ้น

อากิระ โยชิโนะ เข้ามาสานต่อสิ่งที่กูดีนัฟได้ทำไว้ โดยเขาเป็นผู้ที่ทำให้แบตเตอรีสามารถแพร่หลายในเชิงพาณิชย์มากขึ้น โดยใช้วิธีการแทนที่ลิเทียมในฝั่งขั้วลบ (anode) โดยการใช้ปิโตรเลียมโค้ก (Petroleum coke) วัตถุคาร์บอนที่คล้ายคลึงกลับแคโทดของโคบอลต์ออกไซด์ เข้าไปสอดตัวกับลิเทียม-ไอออน ซึ่งผลที่ได้คือ แบตเตอรีที่มีน้ำหนักเบา พกพาสะดวก และสามารถชาร์จไฟได้ใหม่เป็นร้อยครั้งก่อนที่แบตจะเสี่อมคุณภาพไป

แบตเตอรีที่อากิระพัฒนาขึ้นได้เริ่มวางจำหน่ายในเชิงพาณิชย์ในปี 1991 และได้กลายเป็นส่วนประกอบสำคัญของอุปกรณ์พกพาต่างๆ ที่ต้องใช้พลังงานไฟฟ้า มาจนถึงปัจจุบัน

ลิเทียม
แบบจำลองการทำงานของแบตเตอรีลิเทียมไออนของอากิระ โยชิโนะ ขอบคุณภาพจาก ขอบคุณภาพจาก https://www.nobelprize.org/prizes/chemistry/2019/popular-information

ข้อเสียที่ยังแก้ไม่ตกของแบตเตอรรีลิเทียม-ไอออน

อย่างไรก็ตาม แม้แบตเตอรีลิเทียม-ไอออนจะเป็นนวัตกรรมวิเศษเปลี่ยนโลก แต่มันก็ยังมีจุดที่ไม่สมบูรณ์ซึ่งยังรอการแก้ไข
ดังที่เราทราบกันดีว่า แบตเตอรรี-ไอออนเมื่อมีการใช้และชาร์จไฟใหม่ไปนานๆ เข้า ก็สามารถเกิดอาการ “แบตเสื่อม” คือภาวะที่แบตเตอรีลิเทียม-ไอออนไม่สามารถเก็บรักษาพลังงานไว้ได้นานมากพอ เช่นเดียวกับที่มีการใช้งานในช่วงแรกๆ

นอกจากนี้ การออกแบบแบตเตอรรีลีเทียม-ไอออนที่ผิดวิธี (ซึ่งต้องทำให้สอดคล้องกับการออกแบบของอุปกรณ์ที่ใช้แบตเตอรี) อาจทำให้มัน “ระเบิด” ขึ้นได้

มีหลายกรณีที่บริษัทยักษ์ใหญ่ต้องเรียกคืนอุปกรณ์เนื่องจากมีปัญหาเกี่ยวกับปลอดภัยของแบตเตอรี เช่น เมื่อเร็วๆ นี้ บริษัทซัมซุงได้ประกาศเรียกคืน Galaxy Note 7 เนื่องจากพบปัญหาแบตเตอรีลิเทียม-ไอออนระเบิด

ในอีกด้านหนึ่ง เมื่อเปรียบเทียบกับชิปประมวลผล ทั้งในคอมพิวเตอร์หรือโทรศัพท์มือถือ ซึ่งในระยะหลังมีการพัฒนาให้ประมวลผลได้รวดเร็วขึ้นอย่างต่อเนื่อง แบตเตอรรีลิเทียม-ไอออนกลับพัฒนาประสิทธิภาพการเก็บกระแสไฟฟ้าได้ช้ากว่า ซึ่งการพัฒนาอุปกรณ์ฮาร์ดแวร์หรือซอฟต์แวร์ที่ทรงพลังเพิ่มขึ้น นั่นหมายถึงการใช้พลังงานจากแบตเตอรีที่เพิ่มขึ้น และหมายถึงการต้องนำไปชาร์จไฟบ่อยครั้ง จนเกิดภาวะแบตเสื่อมตามมา จึงเป็นโจทย์สำคัญต้องมีการพัฒนาแบตเตอรีลิเทียม-ไอออนให้เท่าทันกับอุปกรณ์ใช้ไฟฟ้าพกพาที่นับวันยิ่งมีความซับซ้อนและทรงประสิทธิภาพมากขึ้น

ลิเทียม
ภาพน้ำเกลือที่อุดมด้วยลิเทียมถูกสูบจากใต้ผิวดินลึกลงไปถึง 20 เมตรขึ้นมาพักไว้ในบ่อระเหย โบลีเวีย ในทวีปอเมริกาใต้ เป็นเป็นหนึ่งในประเทศประเทศที่มีปริมาณแร่ลิเทียมสำรองสูงสุดแห่งหนึ่งของโลก

นอกจากนี้ แม้จะได้ชื่อว่าเป็น แหล่งพลังงานที่ปลอดคาร์บอน แต่นั่นก็ไม่ได้หมายความว่ากระบวนการผลิตจะเป็นมิตรต่อสิ่งแวดล้อมเสียทีเดียว เพราะการสกัดลิเทียมใช้กระบวนเดียวกับการสกัดแร่ ซึ่งส่วนหนึ่งต้องใช้ต้องใช้น้ำเกลือในการสกัด อีกวิธีหนึ่งคือการสกัดจากหินคล้ายกับการสกัดแร่ทั่วไป โดยแร่ลิเทียมนี้มีอยู่มากในทวีปอเมริกาใต้ ซึ่งการสกัดแร่ลีเทียมส่งผลกระทบต่อสิ่งแวดล้อมที่อยู่โดยรอบ และการเติบโตของแบตเตอรีลิเทียม-ไอออน อาจนำมาสู่การสกัดแร่ลิเทียมเกินขนาดได้เช่นเดียวกัน

และปฏิเสธไม่ได้เลยว่า การใช้แบตเตอรีลิเทียม-ไอออนเป็นสาเหตุสำคัญของการเกิด “ขยะอิเล็กทรอนิกส์” โดยในสหรัฐอเมริกา มีแบตเตอรีลิเทียม-ไอออนเพียงร้อยละ 5 เท่านั้นที่มีการจัดเก็บและนำไปใช้ใหม่อย่างถูกวิธี ในส่วนพื้นที่อื่นๆ ของโลก แบตเตอรีลิเทียม-ไอออนยังก่อให้เกิดปัญหาขยะอิเล็กทรอนิกส์ที่อันตรายและรอได้รับการแก้ไข

แม้จะมีจุดที่ยังต้องรอการปรับปรุงอีกมากมาย แต่เราก็ไม่อาจปฏิเสธได้ว่าแบตเตอรรีลิเทียม-ไอออนคือนวัตกรรมที่ “เปลี่ยนวิถีชีวิตมนุษย์” ไปในแบบที่ไม่มีวันหวนกลับ

เพราะในปัจจุบันนี้ เราคงไม่สามารถใช้ชีวิตโดยที่ไม่พึ่งพิงอุปกรณ์ที่ใช้พลังงานจากแบตเตอรีลิเทียม-ไอออนได้อีกแล้ว

แหล่งอ้างอิง

3 นักวิทย์ผู้พัฒนาแบตเตอรี่ลิเธียมไอออน คว้ารางวัลโนเบลสาขาเคมี 2019

Press release: The Nobel Prize in Chemistry 2019

Lithium-Ion Batteries Work Earns Nobel Prize in Chemistry for 3 Scientists

Nobel chemistry prize: Lithium-ion battery scientists honoured


อ่านเพิ่มเติม ลิเทียม : ทองคำสีขาวที่ขับเคลื่อนโลกอนาคต ลิเทียม

เรื่องแนะนำ

นักดาราศาสตร์ได้เปิดเผยรูปหลุมดำเป็นครั้งแรกในประวัติศาสตร์

นักดาราศาสตร์ได้ทำการเปิดเผยภาพหลุมดำเป็นครั้งแรกในประวัติศาสตร์ จากการใช้กล้องโทรทรรศน์ที่มีขนาดเท่ากับโลก นี่คือเหตุผลว่าทำไมเหตุการณ์นี้ถึงสำคัญ

ทำไมคนเราต้องโกหก

พฤติกรรมการโกหกพบได้ในทุกชนชาติ เหตุใดมนุษย์จึงต้องวิวัฒนาการมาพร้อมกับการพูดปดด้วย สิ่งนี้ช่วยเอื้อประโยชน์ใดให้แก่เรา?

วาฬเพชฌฆาตปะทะวาฬสีน้ำเงิน

ฝูงวาฬออร์การ่วมมือกันโจมตีสัตว์ที่มีขนาดใหญ่ที่สุดในโลก พวกมันคงไม่ได้กำลังล่าเหยื่อ เรื่อง ซาราห์ กิบเบ็นส์ เมื่อวันที่ 18 พฤษภาคม ที่เมืองมอนเตเรย์ รัฐแคลิฟอร์เนีย อากาศยานไร้คนขับหรือโดรน (drone) บันทึกภาพฝูงวาฬออร์การ่วมมือกันเข้าโจมตีวาฬสีน้ำเงิน วาฬออร์กาเป็นที่รู้จักอีกชื่อหนึ่งคือ วาฬเพชฌฆาต อาหารของพวกมันคือสัตว์เลี้ยงลูกด้วยนมที่อยู่ในทะเล เช่น โลมา และแมวน้ำ แต่ในกรณีนี้ ผู้ล่าที่น่าเกรงขามคงไม่ได้ตั้งใจที่จะต่อกรกับวาฬสีน้ำเงินตัวเต็มวัย ซึ่งถือว่าเป็นสัตว์ที่มีขนาดใหญ่ที่สุดบนโลก จากข้อมูลที่เคยบันทึกไว้ วาฬสีน้ำเงินมีความยาวลำตัวได้ถึงหนึ่งร้อยฟุต และหนักกว่า 200 ตัน จากภาพที่บันทึกได้ วาฬสีน้ำเงินสบัดตัวไปทางด้านข้างอย่างแรง คล้ายกับเป็นการสร้างกำแพงน้ำ และว่ายออกไปอย่างรวดเร็วให้พ้นวิถีของวาฬออร์กา แนนซี แบล็ก นักชีววิทยาทางทะเล กล่าว เธอบันทึกภาพเหตุการณ์นี้ได้จากดาดฟ้าเรือชมวาฬ เหตุผลที่แท้จริงเบื้องหลังการโจมตี “พวกมันอาจจะกำลังหยอกเล่นเฉยๆ ค่ะ” แบล็กกล่าว “วาฬออร์กาแหย่วาฬสีน้ำเงิน เหมือนอย่างที่แมวเล่นกับเหยื่อของมัน วาฬชนิดนี้มีนิสัยขี้เล่นและชอบเข้าสังคม” แบล็กดำเนินธุรกิจนำชมวาฬในชื่อ Monterey Bay Whale Watch ตลอด 25 ปีที่ผ่านมา เธอเฝ้าสังเกตวาฬออร์กาและสัตว์ชนิดอื่นๆ ในกลุ่มคีตาเชียน (สัตว์เลี้ยงลูกด้วยนมที่อยู่ในทะเล) แม้ว่าจะมีขนาดใหญ่กว่าวาฬออร์กา […]

แนะนำตัวคู่หูอีกดวงของโลก

  พบดวงจันทร์ดวงที่สองของโลก องค์การนาซาพบดาวเคราะห์น้อยที่ชื่อว่า Asteroid 2016 H03 โคจรรอบดวงอาทิตย์และเข้าใกล้โลกอยู่เนืองๆ และอาจดำเนินต่อไปเช่นนี้อีกหลายร้อยปีข้างหน้า ขณะที่ดาวเคราะห์น้อย 2016 H03 โคจรรอบดวงอาทิตย์ ก็ดูเหมือนว่ามันโคจรรอบโลกด้วยเช่นกัน แต่อยู่ห่างไกลเกินไปที่จะนับเป็นดาวบริวารของโลกอย่างแท้จริง กระนั้น ดาวเคราะห์น้อยดวงนี้ก็เรียกได้ว่าเป็นคู่หูของโลกที่อยู่มานานที่สุดในปัจจุบัน และเรียกได้ว่าเป็น “บริวารเสมือน” (quasi-satellite) “ดาวเคราะห์น้อย 2016 H03 โคจรรอบโลกและไม่เคยออกห่างไปไหนระหว่างที่เราโคจรรอบดวงอาทิตย์ไปด้วยกัน ดังนั้นเราจึงเรียกมันว่าเป็นบริวารเสมือนครับ” พอล โชดาส ผู้จัดการของ NASA’s Center for Near-Earth Object (NEO) Studies ที่ Jet Propulsion Laboratory ในเมืองแพซาดีนา รัฐแคลิฟอร์เนีย บอก “ดาวเคราะห์น้อยอีกดวงที่ชื่อ 2003 YN107 โคจรด้วยรูปแบบคล้ายคลึงกันอยู่ช่วงหนึ่งเมื่อสิบปีก่อน แต่แล้วก็หลุดออกจากวงโคจรของเราไป แต่ดาวเคราะห์น้อยดวงใหม่นี้อยู่ติดหนึบกับเรามากกว่าครับ การคำณวนของเราบ่งบอกว่า 2016 HO3 เป็นบริวารเสมือนของโลกที่มีความเสถียรมาเกือบร้อยปีแล้ว และน่าจะโคจรในฐานะคู่หูของโลกไปอีกหลายร้อยปีเลยละครับ” มีผู้สังเกตเห็นดาวเคราะห์น้อย 2016 H03 […]