งานและพลังงาน คือศาสตร์หนึ่งในวิชาฟิสิกส์ที่ถูกนำมาประยุกต์ใช้ในเทคโนโลยีต่าง ๆ มาอย่างยาวนาน เพื่อผลิต ประดิษฐ์ และก่อสร้าง สิ่งอำนวยความสะดวกต่างๆ ในชีวิตมนุษย์
งานและพลังงาน
งาน (Work) คือ ปริมาณของพลังงานที่เป็นผลมาจากแรงซึ่งกระทำต่อวัตถุ ก่อนส่งผลให้วัตถุดังกล่าวเคลื่อนที่ไปตามแนวแรงได้ในระยะทางหนึ่ง ซึ่งในระบบเอสไอ (SI) งานเป็นปริมาณสเกลาร์ (Scalar) เช่นเดียวกับพลังงาน มีหน่วยเป็นนิวตันเมตร (N•m) หรือ จูล (J) สามารถคำนวณได้จากความสัมพันธ์ ดังต่อไปนี้
W = F x s
เมื่อ
W = งานที่เกิดขึ้นจากแรงกระทำ
F = แรงที่กระทำต่อวัตถุ มีหน่วยเป็นนิวตัน (N)
s = ระยะทางที่วัตถุเคลื่อนที่ไปตามแนวแรง มีหน่วยเป็นเมตร (m)
ในทางฟิสิกส์ งานจะเกิดขึ้นได้ ต่อเมื่อมีแรงมากระทำต่อวัตถุ แล้วทำให้วัตถุมีการกระจัดอยู่ในทิศทางหรือในแนวเดียวกันกับแรง เช่น เมื่อยกกล่องที่มีน้ำหนัก 30 นิวตัน ขึ้นจากพื้นไปวางบนชั้นหนังสือที่สูงจากพื้น 1.2 เมตร งานที่เกิดขึ้นจากแรงกระทำดังกล่าว สามารถคำนวณได้จากสูตร W = F x s ตัวอย่างเช่น
จากแรงกระทำ หรือ F = 30 นิวตัน และระยะทาง หรือ s = 1.2 เมตร
W = 30 นิวตัน x 1.2 เมตร = 36 จูล
ดังนั้น งานที่ทำได้มีค่าเท่ากับ 36 จูล
ซึ่งจากนิยามดังกล่าว งานที่เกิดขึ้นจะมีค่าเป็นบวก (+) เมื่อแรงและการกระจัดเป็นไปในทิศทางเดียวกัน โดยงานที่ได้จะมีค่าเป็นลบ (-) ต่อเมื่อแรงและการกระจัดเป็นไปในทิศทางตรงกันข้าม ขณะที่งานจะมีค่าเป็นศูนย์ (0) หากแรงและการกระจัดเกิดขึ้นในระนาบซึ่งตั้งฉากต่อกันและกัน เนื่องจากแรงที่กระทำไม่สามารถทำให้วัตถุเคลื่อนที่ไปจากตำแหน่งเดิมได้
กำลัง (Power) คือ อัตราของงานที่ทำได้ในหนึ่งหน่วยเวลา โดยกำลังเป็นตัวชี้วัดความสามารถในการทำงานของทั้งเครื่องยนต์ มนุษย์ สัตว์ หรือสิ่งมีชีวิตอื่น ๆ โดยสามารถคำนวณได้จากความสัมพันธ์ ดังต่อไปนี้
P = W/t
เมื่อ
P = กำลัง มีหน่วยเป็นวัตต์ (W)
W = งานที่ทำได้ มีหน่วยเป็นนิวตันเมตร หรือ จูล (J)
t = ระยะเวลาของการทำงาน มีหน่วยเป็นวินาที (s)
พลังงาน (Energy) คือ ความสามารถในการทำงานของสิ่งมีชีวิต วัตถุ หรือสสารต่าง ๆ เช่น การหายใจ การเคลื่อนที่ หรือการเปลี่ยนแปลงสถานะของสสาร กระบวนการเหล่านี้สามารถดำเนินต่อไปได้เพราะพลังงานในธรรมชาติ พลังงานเป็นปริมาณพื้นฐานของระบบ ซึ่งไม่มีวันสูญสลาย แต่สามารถเปลี่ยนไปอยู่ในรูปแบบต่าง ๆ ของพลังงาน ตาม “กฎการอนุรักษ์พลังงาน” (Law of Conservation of Energy) เช่น พลังงานนิวเคลียร์ พลังงานความร้อน หรือพลังงานไฟฟ้า เป็นต้น
ประเภทของพลังงาน พลังงานแบ่งออกเป็น 6 ประเภท ตามลักษณะที่เห็นได้ชัดเจน ซึ่งได้แก่
- พลังงานเคมี
พลังงานเคมีเป็นพลังงานที่สะสมอยู่ในสารต่างๆ โดยอยู่ในพันธะระหว่างอะตอมในโมเลกุล เมื่อพันธะแตกสลาย พลังงานสะสมจะถูกปล่อยออกมาในรูปของความร้อนและแสงสว่าง เช่น พลังงานที่ถูกเก็บไว้ในแบตเตอรี่ พลังงานในกองฟืน พลังงานในขนมช็อกโกแลต พลังงานในถังน้ำมัน เมื่อไม้ลุกไหม้แล้วจะให้คาร์บอนไดออกไซด์และไอน้ำ รวมถึงผลิตของเสียอื่นๆ เช่น ขี้เถ้า
เนื่องจากเชื้อเพลิงที่ใช้แต่ละชนิด มีโครงสร้างทางเคมีที่ต่างกัน เมื่อใช้ในปริมาณเชื้อเพลิงที่เท่ากัน จึงให้ความร้อนไม่เท่ากัน ซึ่งก๊าซธรรมชาตินั้นให้ความร้อนมากกว่าน้ำมัน และน้ำมันนั้นก็ให้ความร้อนมากกว่าถ่านหิน
- พลังงานความร้อน
แหล่งกำเนิดพลังงานความร้อน มนุษย์เราได้พลังงานความร้อนมาจากหลายแห่งด้วยกัน เช่น จากดวงอาทิตย์, พลังงานในของเหลวร้อนใต้พื้นพิภพ การเผาไหม้ของเชื้อเพลิง พลังงานไฟฟ้า พลังงานนิวเคลียร์ พลังงานน้ำในหม้อต้มน้ำ พลังงานเปลวไฟ ผลของความร้อนทำให้สารเกิดการเปลี่ยนแปลง เช่น อุณหภูมิสูงขึ้น หรือมีการเปลี่ยนสถานะไป
นอกจากนี้ พลังงานความร้อน ยังสามารถทำให้เกิดการเปลี่ยนแปลงทางเคมีได้อีกด้วย หน่วยที่ใช้วัดปริมาณความร้อน คือ แคลอรี่ โดยใช้เครื่องมือที่เรียกว่า แคลอรี่มิเตอร์
- พลังงานกล
พลังงานกลเป็นพลังงานที่เกี่ยวข้องกับการเคลื่อนที่โดยตรง เช่น ก้อนหินที่อยู่บนยอดเนินจะมีพลังงานศักย์กล (Potential mechanical energy) อยู่จำนวนหนึ่ง ขณะที่ก้อนหินกลิ้งลงมาตามทางลาดของเนิน พลังงานศักย์จะลดลง และเกิดพลังงานจลน์กลของการเคลื่อนที่ (Kinetic mechanical energy) ขึ้นแทน
สิ่งมีชีวิตอาศัยพลังงานรูปนี้ในการทำงานที่ต้องมีการ เคลื่อนไหวเป็นประจำ เช่น การเดิน การขยับแขนขา การหยิบวัตถุ เป็นต้น
- พลังงานจากการแผ่รังสี
พลังงานที่มาในรูปของคลื่น เช่น แสง ความร้อน คลื่นวิทยุ อินฟาเรด อัลตราไวโอเลต รังสีเอกซ์ รังสีคอสมิก สิ่งมีชีวิตต้องอาศัยพลังงานรูปนี้ ในกระบวนการที่สำคัญต่างๆ เช่น การมองเห็นภาพ การสังเคราะห์ด้วยแสง การขยายพันธุ์ชนิดที่ขึ้นอยู่กับช่วงแสง อาจสรุปได้ว่า เป็นพลังงานจากคลื่นแม่เหล็กไฟฟ้านั้นเอง ซึ่งพลังงานรูปนี้มีบทบาทต่อความเป็นอยู่ปกติของสิ่งมีชีวิต และอาจจะได้พลังงานที่ได้รับจากดวงอาทิตย์ พลังงานจากเสาส่งสัญญาณทีวี พลังงานจากหลอดไฟ พลังงานจากเตาไมโครเวฟ และพลังงานจากเลเซอร์ที่ใช้อ่านแผ่นซีดี เป็นต้น
- พลังงานไฟฟ้า
พลังงานที่ได้จากปฏิกิริยาเคมีแบบหนึ่งอันมีผลให้เกิดกระแสไฟฟ้าขึ้นได้ และกระแสไฟฟ้าที่เกิดขึ้นนี้จะไหลผ่านความต้านทานไฟฟ้าได้ถ้าต่อให้เป็นวงจร ผลจากกระแสไฟฟ้าดังกล่าวอาจทำให้เกิดผลต่างๆ เช่นก่อให้เกิดอำนาจแม่เหล็ก เกิดความร้อนหรือแสงสว่าง พลังงานที่เกิดจากการผ่านขดลวดไปในสนามแม่เหล็ก พลังงานที่ใช้ขับเครื่องคอมพิวเตอร์ และพลังงานที่ได้จากเซลล์แสงอาทิตย์ เป็นต้น
- พลังงานนิวเคลียร์
พลังงานที่ถูกปล่อยออกจากสารกัมมันตภาพรังสี ที่มีอยู่ในธรรมชาติหรือที่เกิดในเตาปฏิกรณ์ปรมาณูหรือระเบิดปรมาณู การเกิดฟิวชันของนิวเคลียร์เล็กมีหลักอยู่ว่า ถ้านำเอาธาตุเบาๆ ตั้งแต่ 2 ธาตุขึ้นไป มารวมกันโดยมีพลังงานความร้อนอย่างสูงเข้าช่วย จะทำให้ธาตุเบาๆ นี้รวมกัน กลายเป็นธาตุใหม่ ซึ่งหนักกว่าเดิม
ส่วนฟิสชัน เกิดจากปฏิกิริยาระหว่างการยิงอนุภาคบางชนิดกับนิวเคลียสของธาตุหนักๆ ทำให้นิวเคลียสของธาตุหนักแตกแยกออกเป็น 2 ส่วน ซึ่งแต่ละส่วนเป็นธาตุที่เบากว่าเดิม และขนาดเกือบเท่าๆ กัน พลังงานรูปนี้มีบทบาทต่อความเป็นอยู่ปกติของสิ่งมีชีวิตน้อย
ประเภทของพลังงานกล (Mechanical Energy)
พลังงานศักย์ (Potential Energy : Ep) คือ พลังงานที่สะสมอยู่ในวัตถุหรือสสารที่หยุดนิ่งอยู่กับที่ โดยพลังงานศักย์สามารถจำแนกออกเป็น 2 ประเภท ได้แก่
พลังงานศักย์โน้มถ่วง (Gravitational Potential Energy) คือ พลังงานที่สะสมอยู่ในวัตถุ เนื่องจากแรงโน้มถ่วงของโลก เช่น พลังงานของน้ำในเขื่อน หรือ ก้อนหินบนภูเขาสูง ซึ่งทำให้พลังงานศักย์โน้มถ่วงสามารถคำนวณได้จากความสัมพันธ์ ดังนี้
Ep = mgh
เมื่อ
Ep = พลังงานศักย์โน้มถ่วง มีหน่วยเป็นนิวตันเมตร หรือจูล (J)
m = มวล มีหน่วยเป็นกิโลกรัม (kg)
g = ความเร่งจากแรงโน้มถ่วงโลก มีค่าราว 9.8 เมตรต่อวินาทีกำลังสอง (m/s2)
h = ระยะความสูงของวัตถุ มีหน่วยเป็นเมตร (m)
- พลังงานศักย์ยืดหยุ่น (Elastic Potential Energy) คือ พลังงานที่สะสมอยู่ในวัตถุที่มีความหยืดหยุ่น โดยพลังงานจะสะสมอยู่ในรูปของการหดตัว บิดเบี้ยว หรือโค้งงอ จากการได้รับแรงกระทำ ก่อนมีแรงดึงตัวกลับเพื่อคืนสู่สภาพเดิม เช่น สปริง ขดลวด หรือนาฬิกาไขลาน
พลังงานจลน์ (Kinetic Energy : Ek) คือ พลังงานที่เกิดขึ้นในขณะที่วัตถุกำลังเคลื่อนที่ เช่น การไหลของกระแสน้ำ การบินของนก และการเคลื่อนที่ของรถยนต์ ซึ่งพลังงานจลน์สามารถคำนวณได้จากความสัมพันธ์ ดังนี้
Ek = ½ mv^2
เมื่อ
Ek = พลังงานจลน์ มีหน่วยเป็นนิวตันเมตร หรือ จูล (J)
m = มวล มีหน่วยเป็นกิโลกรัม (kg)
v = ความเร็ว มีหน่วยเป็นเมตรต่อวินาที (m/s)
ปัจจัยที่มีผลต่อพลังงานจลน์ คือ มวลของวัตถุและความเร็วในการเคลื่อนที่ ซึ่งโดยทั่วไปแล้ว วัตถุที่เคลื่อนที่ด้วยความเร็วสูงมักมีพลังงานจลน์มากกว่าวัตถุซึ่งเคลื่อนที่ด้วยความเร็วต่ำ แต่ถ้าวัตถุดังกล่าวเคลื่อนที่ด้วยความเร็วเท่ากัน วัตถุที่มีมวลมากกว่าจะมีพลังงานจลน์มากกว่า
สืบค้นและเรียบเรียง
คัดคณัฐ ชื่นวงศ์อรุณ
ข้อมูลอ้างอิง
https://library.ipst.ac.th/handle/ipst/183
https://www.facebook.com/textile.phys.and.chem/posts/1964648613573563/
https://www.trueplookpanya.com/knowledge/content/63321/-blo-sciphy-sci-
http://academic.obec.go.th/textbook/web/images/book/1002428_example.pdf