การเคลื่อนที่ของสิ่งมีชีวิต มีกลไลทางสรีระวิทยาอย่างไร เกี่ยวข้องกับระบบใดบ้าง

การเคลื่อนที่ของสิ่งมีชีวิต

การเคลื่อนที่ของสิ่งมีชีวิต แต่ละชนิดแตกต่างกันออกไป ตามโครงสร้างทางสรีรวิทยาและวิวัฒนาการของสิ่งมีชีวิต ไม่ว่าจะเป็นการเคลื่อนที่เข้าหาสิ่งเร้า (Stimuli) เพื่อตอบสนองต่อปัจจัยที่จำเป็นต่อการดำรงชีวิต เช่น แหล่งอาหาร แหล่งน้ำ แหล่งที่อยู่อาศัย แหล่งสืบพันธุ์ และการเคลื่อนที่ออกห่างเพื่อหลีกหนีภัยอันตราย เช่น ศัตรูตามธรรมชาติ สารเคมี และความร้อน เป็นต้น

การเคลื่อนที่ของสิ่งมีชีวิต สามารถจำแนกออกเป็น 4 กลุ่ม ตามโครงสร้างทางสรีรวิทยาของสิ่งมีชีวิต ดังนี้

การเคลื่อนที่ของสิ่งมีชีวิตเซลล์เดียว

สิ่งมีชีวิตเซลล์เดียวและสิ่งมีชีวิตหลายเซลล์ในอาณาจักรโพรทิสตา (Kingdom Protista) คือ สิ่งมีชีวิตขนาดเล็กที่ไม่มีระบบเนื้อเยื่อและโครงกระดูกเหมือนสัตว์ชั้นสูงชนิดอื่น ๆ ดังนั้น การเคลื่อนไหวที่เกิดขึ้นจึงจำเป็นต้องอาศัยโครงร่างค้ำจุนภายในเซลล์ที่เรียกว่า “ไซโทสเกเลตอน” (Cytoskeleton) ซึ่งประกอบด้วยเส้นใยโปรตีนจำนวนมาก เช่น ไมโครฟิลาเมนท์ (Microfilament) ที่ประกอบขึ้นจากโปรตีน 2 ชนิด ได้แก่ แอคติน (Actin) และไมโอซิน (Myosin) ทำหน้าที่คงรูปร่างไปพร้อมกับการกำหนดลักษณะการเคลื่อนไหว

การเคลื่อนที่ของสิ่งมีชีวิต สิ่งมีชีวิต สปีชีย์

 

การเคลื่อนที่ของสิ่งมีชีวิตเซลล์เดียว มี 2 ลักษณะ คือ

  • การเคลื่อนไหวโดยอาศัยการไหลของไซโทพลาซึม หมายถึง ส่วนของโพรโทพลาซึมภายในเซลล์ทั้งหมด ทำให้เกิดการเคลื่อนไหวโดยอาศัยการยืดหดส่วนของไซโทพลาซึมออกนอกเซลล์หรือที่เรียกว่า “เท้าเทียม” (Pseudopodium) ในราเมือกและอะมีบา ซึ่งการไหลของไซโทพลาซึมนี้ เกิดขึ้นจากการไหลไปมาของเอกโทพลาซึม (Ectoplasm) หรือไซโทพลาซึมชั้นนอกที่มีลักษณะเป็นสารกึ่งแข็งกึ่งเหลว (Gel) และเอนโดพลาซึม (Endoplasm) หรือไซโทพลาซึมชั้นในที่มีลักษณะคล้ายของเหลว (Sol) ภายในเซลล์ ซึ่งสามารถดันเยื่อหุ้มเซลล์ให้โป่งออก กลายเป็นเท้าเทียมสำหรับการเคลื่อนไหว
  • การเคลื่อนไหวโดยอาศัยการโบกสะบัดของแฟลเจลลัม (Flagellum) และซีเลีย (Cilia) หมายถึง การอาศัยโครงสร้างขนาดเล็กที่มีลักษณะคล้ายหนวดหรือขน ยื่นออกมาจากเซลล์ทำหน้าที่โบกสะบัดและพาร่างกายเคลื่อนที่ ซึ่งแฟลเจลลัมมักพบในสิ่งมีชีวิตเซลล์เดียวบางชนิด เช่น ยูกลีน่า และวอลวอกซ์ มีจำนวนไม่มากราว 1-2 เส้น ในขณะที่ซิเลียมีลักษณะคล้ายขนจำนวนมาก มักพบในเซลล์ของพืชหรือสิ่งมีชีวิตเซลล์เดียว เช่น พารามีเซียม และพลานาเรีย

การเคลื่อนที่ของสิ่งมีชีวิต สิ่งมีชีวิต สปีชีย์

 

การเคลื่อนที่ของสัตว์ไม่มีกระดูกสันหลัง มีลักษณะแตกต่างกันออกไปตามปัจจัยการดำรงชีวิตและสภาพแวดล้อม เช่น

  • การเคลื่อนที่ของไส้เดือน : อาศัยการยืดหดของกล้ามเนื้อ 2 ชุด คือ กล้ามเนื้อวงกลมรอบตัว (Circular Muscle) ที่อยู่ทางด้านนอกและกล้ามเนื้อตามยาว (Longitudinal Muscle) ตลอดลำตัวทางด้านใน รวมถึงเดือย (Setae) ซึ่งเป็นโครงสร้างขนาดเล็กที่ยื่นออกจากลำตัวรอบปล้องช่วยในการเคลื่อนที่
  • การเคลื่อนที่ของแมงกะพรุน : อาศัยการหดตัวของเนื้อเยื่อ 2 ชั้นและของเหลวภายในที่เรียกว่า “มีโซเกลีย” (Mesoglea) ซึ่งแทรกอยู่ระหว่างเนื้อเยื่อชั้นนอกและเนื้อเยื่อชั้นในบริเวณขอบกระดิ่งและผนังลำตัว ทำให้เกิดการพ่นน้ำออกมาทางด้านล่าง ซึ่งส่งผลให้ส่วนของลำตัวสามารถพุ่งทะยานไปข้างหน้าในทิศทางตรงข้ามเป็นจังหวะ
  • การเคลื่อนที่ของดาวทะเล : อาศัยระบบท่อน้ำหรือการหมุนเวียนของน้ำภายในร่างกาย ซึ่งส่งแรงดันไปยังส่วนที่เรียกว่า “ท่อขา” หรือ “ทิวบ์ฟีต” (Tube Feet) ทำให้เกิดการยืดขยายหรือหดสั้นของกล้ามเนื้อบริเวณดังกล่าว ซึ่งนำไปสู่การเคลื่อนที่ของทิวบ์ฟิตรอบตัวของดาวทะเลอย่างต่อเนื่อง รวมไปถึงบริเวณปลายสุดของทิวบ์ฟิตที่ยังมีลักษณะคล้ายแผ่นดูด ช่วยให้ดาวทะเลสามารถยึดเกาะกับพื้นผิวระหว่างการเคลื่อนที่ได้อย่างมีประสิทธิภาพอีกด้วย

การเคลื่อนที่ของสิ่งมีชีวิต สิ่งมีชีวิต สปีชีย์

 

  • การเคลื่อนที่ของแมลง : อาศัยการทำงานในสภาวะตรงกันข้าม (Antagonism) ของกล้ามเนื้อบริเวณขาและข้อต่อ 2 ชุด คือ กล้ามเนื้อเฟลกเซอร์ (Flexor Muscle) และกล้ามเนื้อเอกซ์เทนเซอร์ (Extensor Muscle) ซึ่งสามารถเหยียดยืดออกและหดกลับทำให้แมลงสามารถเคลื่อนที่โดยการกระโดด รวมถึงกล้ามเนื้ออีก 2 ชุดบริเวณปีก คือ กล้ามเนื้อยึดเปลือกหุ้มส่วนอกและกล้ามเนื้อตามยาวบริเวณปีกที่ส่งผลให้แมลงสามารถบินไปมาในอากาศได้นั่นเอง

การเคลื่อนที่ของสัตว์มีกระดูกสันหลัง สัตว์มีกระดูกสันหลังทุกชนิดมีระบบโครงกระดูกที่ทำหน้าที่เป็นทั้งโครงร่างค้ำจุนร่างกายและช่วยส่งเสริมการเคลื่อนที่ ซึ่งสัตว์มีกระดูกสันหลังทั้งที่อาศัยอยู่ในน้ำและบนบก ต่างมีลักษณะการเคลื่อนไหวที่แตกต่างกันออกไปตามปัจจัยการดำรงชีวิตและสภาพแวดล้อมของตนเช่นเดียวกัน

  • การเคลื่อนที่ของปลา : อาศัยการทำงานร่วมกันของโครงสร้างต่าง ๆ บริเวณลำตัว ทั้งกล้ามเนื้อที่ยึดติดกับกระดูกสันหลัง กล้ามเนื้อลำตัว และกล้ามเนื้อบริเวณครีบและหาง ซึ่งเป็นการหดตัวของกล้ามเนื้อและการทำงานในสภาวะตรงกันข้ามเช่นเดียวกัน ก่อให้เกิดการโบกสะบัดของครีบ หาง และลำตัวที่ทั้งช่วยกำหนดทิศทางและพยุงตัว
  • การเคลื่อนที่ของนก : อาศัยการทำงานในสภาวะตรงข้ามของกล้ามเนื้อแข็งแรง 2 ชุดที่ยึดอยู่ระหว่างกระดูกโคนปีกและกระดูกอก คือ กล้ามเนื้อยกปีก (Elevator Muscle) และกล้ามเนื้อกดปีก (Depressor Muscle) ที่ทำให้นกสามารถขยับปีกขึ้นลงได้ รวมไปถึงโครงสร้างภายใน ถุงลม และขนของนกที่สนับสนุนการบินและการพยุงตัวของนกระหว่างการเคลื่อนที่ในอากาศ

การเคลื่อนที่ของสิ่งมีชีวิต, สิ่งมีชีวิต, สปีชีย์

  • การเคลื่อนที่ของสัตว์บก : อาศัยโครงสร้างและอวัยวะที่ส่งเสริมการเคลื่อนที่ โดยเฉพาะแขนและขา ซึ่งมีกลไกการเคลื่อนที่หรือการทำงานของกล้ามเนื้อที่คล้ายคลึงกับสัตว์ชนิดอื่น ๆ แต่อาจจะมีพัฒนาการของลักษณะโครงสร้างที่แตกต่างกันออกไป เพื่อเพิ่มประสิทธิภาพในการเคลื่อนที่ เช่น
    • การใช้เท้าทั้ง 4 ข้างของเสือ สุนัข และกวาง
    • การใช้งานกระดูกสันหลังเคลื่อนที่แบบตัวเอส (S) ของจระเข้ จิ้งจก และงู เป็นต้น

การเคลื่อนที่ของสิ่งมีชีวิต, สิ่งมีชีวิต, สปีชีย์

สืบค้นและเรียบเรียง
คัดคณัฐ ชื่นวงศ์อรุณ


ข้อมูลอ้างอิง

สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สสวท.) – https://www.scimath.org/lesson-biology/item/7025-2017-05-21-08-09-47

โรงเรียนสาธิตมหาวิทยาลัยราชภัฏสวนสุนันทา – http://elsd.ssru.ac.th/pawinee_ra/pluginfile.php/47/course/summary/การเคลื่อนที่ของสิ่งมีชีวิต.pdf

มหาวิทยาลัยรามคำแหง – http://old-book.ru.ac.th/e-book/c/CU474/chapter6.pdf


เรื่องอื่นๆ ที่น่าสนใจ : การเรืองแสงของสิ่งมีชีวิต (Bioluminescence)

เรื่องแนะนำ

การผุพัง การกร่อน และการกัดเซาะ

การผุพัง (Weathering) คือ กระบวนการเปลี่ยนแปลงลักษณะทางกายภาพของหินบนพื้นผิวโลก ไม่ว่าจะเป็นการแตกหัก ผุพัง หรือยุบสลายของหินจากปัจจัยต่าง ๆ ในธรรมชาติหรือจากการกระทำของมนุษย์ ซึ่งนับเป็นกระบวนการแรกเริ่มของการก่อกำเนิดดินและการเจริญงอกงามของสิ่งมีชีวิตต่าง ๆ  การผุพังสามารถจำแนกออกเป็น 2 ประเภท คือ 1. การผุพังทางกายภาพ (Mechanical Weathering) เป็นกระบวนการผุพังของหินที่ทำให้เกิดการเปลี่ยนแปลงของขนาดและรูปร่างภายนอก โดยไม่ก่อให้เกิดการเปลี่ยนแปลงภายในเนื้อหิน โดยมีสาเหตุจากปัจจัยต่าง ๆ เช่น  การกระทำของคลื่น ลม และการเคลื่อนที่ของธารน้ำแข็งตามแรงโน้มถ่วงของโลก ซึ่งทำให้เกิดการเสียดสีระหว่างกันจนเกิดการผุพังและแตกสลาย การเปลี่ยนแปลงของอุณหภูมิอากาศ ในช่วงกลางวันและกลางคืน ความแตกต่างของอุณหภูมิที่ส่งผลต่อการขยายตัวและการหดตัวของหิน รวมถึงการเปลี่ยนแปลงสถานะของน้ำตามธรรมชาติ เมื่ออุณหภูมิลดต่ำลง ซึ่งก่อให้เกิดน้ำแข็งตามรอยแตกหรือรอยแยกของก้อนหิน สามารถสร้างแรงดันที่ส่งผลให้เกิดการขยายตัวของรอยแตกร้าวและการผุพังได้ง่าย การกระทำของสิ่งมีชีวิตต่าง ๆ ทั้งจากพืช สัตว์ และมนุษย์ เช่น การเจริญเติบโตของพืชบนรอยแตกของหิน การขุดเจาะของสัตว์หรือกิจกรรมต่าง ๆ ของมนุษย์   2. การผุพังทางเคมี (Chemical Weathering) เป็นกระบวนการผุพังของหิน จากการเปลี่ยนแปลงโครงสร้างภายใน โดยอาศัยการทำปฏิกิริยาทางเคมีระหว่างแร่ธาตุภายในหินและปัจจัยต่าง ๆ ในธรรมชาติ […]

ฝนหิมะ (Sleet)

ฝนหิมะ หนึ่งในหยาดน้ำฟ้า ที่มักปรากฏขึ้นในฤดูหนาว ซึ่งก่อตัวขึ้นจากการผกผันของอุณหภูมิในชั้นบรรยากาศโลกที่ทำให้เกิดการเปลี่ยนสถานะกลับไปมาของหยาดน้ำฟ้าอย่างรวดเร็ว จากเกล็ดหิมะละลายกลายเป็นน้ำฝนและเย็นตัวลงจนเปลี่ยนสถานะกลับไปเป็นน้ำแข็งอีกครั้ง ก่อนตกลงสู่พื้นดิน ฝนหิมะ (Sleet) หรือ “ฝนน้ำแข็ง” คือ หนึ่งในหยาดน้ำฟ้า (Precipitations) ที่มักปรากฏขึ้นในฤดูหนาว มีลักษณะเป็นก้อนน้ำแข็งกลมมนขนาดเล็ก ซึ่งก่อตัวขึ้นจากการผกผันของอุณหภูมิในชั้นบรรยากาศโลกที่ทำให้เกิดการเปลี่ยนสถานะกลับไปมาของหยาดน้ำฟ้าอย่างรวดเร็ว ขณะลอยตัวอยู่ในอากาศเหนือพื้นดิน จากเกล็ดหิมะละลายกลายเป็นน้ำฝนและเย็นตัวลงจนเปลี่ยนสถานะกลับไปเป็นน้ำแข็งอีกครั้ง ก่อนตกลงสู่พื้นดิน “ฝนหิมะ” จึงมีคุณสมบัติแตกต่างจากหยาดน้ำฟ้าในฤดูหนาวอื่น ๆ ไม่ว่าจะเป็นหิมะ (Snow) ลูกเห็บ (Hail) หรือฝนเยือกแข็ง (Freezing Rain) การเกิดฝนหิมะ ฝนหิมะก่อตัวขึ้นจากกระบวนการทางธรรมชาติเช่นเดียวกับหยาดน้ำฟ้าประเภทอื่น ๆ จากปรากฏการณ์อุณหภูมิผกผัน (Temperature Inversion) ในชั้นบรรยากาศโลก ซึ่งโดยปกติแล้ว อุณหภูมิในชั้นบรรยากาศโทรโพสเฟียร์ (Troposphere) จะลดลงตามระดับความสูงเหนือพื้นดินในอัตรา 6.5 องศาเซลเซียสต่อความสูงทุก 1 กิโลเมตร แต่เมื่อเกิดการแทรกตัวของกระแสอากาศหรือมวลอากาศอุ่น (Warm Air Mass) ท่ามกลางมวลอากาศที่เย็นกว่าที่รายล้อมอยู่โดยรอบ ไม่ว่าจะมีสาเหตุมาจากลักษณะภูมิประเทศของพื้นที่ดังกล่าวหรือเกิดจากการเย็นตัวช้าลงของพื้นแผ่นดินในฤดูหนาว ต่างส่งผลให้ลำดับชั้นของอุณหภูมิในชั้นบรรยากาศ เกิดความแปรปรวนไปจากสภาวะปกติ ฝนหิมะจึงก่อตัวขึ้นในสภาวะแวดล้อมเช่นนี้ที่ในชั้นบรรยากาศโลกมีอุณหภูมิต่ำกว่า 0 องศาเซลเซียส […]

ดูเหมือนว่าเกราะของไดโนเสาร์ไม่ได้มีไว้แค่ต่อสู้

ดูเหมือนว่าเกราะของไดโนเสาร์ไม่ได้มีไว้แค่ต่อสู้ ไดโนเสาร์ บางชนิดมีเกราะไว้สำหรับช่วยให้มันได้เปรียบยามต่อสู้ แต่สำหรับไดโนเสาร์สายพันธุ์หนึ่งที่เคยมีชีวิตอยู่ในยุคครีเตเชียส ร่างกายที่ปกคลุมไปด้วยแผ่นเกราะของมันดูเหมือนว่าจะมีส่วนช่วยในการจับคู่ผสมพันธุ์ด้วย ผลการศึกษาฟอสซิลของ Borealopelta markmitchelli ไดโนเสาร์หุ้มเกราะ พบว่าแผ่นกระดูกที่อยู่ล้อมรอบคอและไหล่ของมันนั้นมีขนาดใหญ่โตเกินไปสำหรับการต่อสู้ นั่นจึงเป็นไปได้ว่าแผ่นกระดูกเหล่านี้น่าจะมีไว้สำหรับการดึงดูดความสนใจของเพศตรงข้ามหรือใช้ข่มขวัญคู่แข่งของมัน ย้อนกลับไปเมื่อ 110 ล้านปีก่อน เจ้าไดโนเสาร์กินพืชตัวนี้ตาย ร่างของมันจมลงไปยังก้นมหาสมุทรโบราณ ในปี 2011 คนงานเหมืองในแคนาดาค้นพบร่างของมันเข้าโดยบังเอิญ  นับเป็นความโชคดีที่ร่างของมันจมลงในตะกอน ส่งผลให้แร่ธาตุเข้าไปแทนที่เนื้อเยื่อก่อนที่มันจะเน่าเปื่อย ร่างที่กลายเป็นหินทั้งร่างช่วยให้นักวิทยาศาสตร์สามารถศึกษาได้ว่าไดโนเสาร์ตัวนี้เคยมีชีวิตอยู่อย่างไร ในความเป็นจริงการคาดเดาว่าเกราะของสัตว์นั้นถูกใช้เพื่อการต่อสู้และการจับคู่ก็ไม่ได้เป็นสิ่งที่น่าประหลาดใจนัก ช้างเองก็ใช้งวงของมันในการต่อสู้ ป้องกันตัว และงวงเดียวกันนี้ก็ใช้เป็นเกณฑ์ในการวัดด้วยเช่นกันหากตัวเมียต้องการที่จะเลือกผสมพันธุ์ “ส่วนใหญ่ของโครงสร้างที่ซับซ้อนเหล่านี้ ไม่ว่าจะเป็นหางของนก การเปลี่ยนสีของกิ้งก่า หรือเขาในสัตว์สี่เท้า แรงขับที่ทำให้พวกมันวิวัฒนาการสิ่งเหล่านี้ขึ้นมาล้วนมาจากการคัดสรรทางเพศ” Caleb Brown นักวิจัยจากพิพิธภัณฑ์ Royal Tyrrell กล่าว ซึ่งตัวเขาเองกำลังอยู่ระหว่างการศึกษาไดโนเสาร์ Borealopelta ด้วยทุนสนับสนุนจากเนชั่นแนล จีโอกราฟฟิก ผลการวิจัยเจ้า Borealopelta ใหม่จาก Brown ถูกเผยแพร่ผ่านเว็บไซต์ PeerJ ซึ่งเป็นหนึ่งในงานวิจัยไม่กี่ชิ้นที่ศึกษาเกี่ยวกับไดโนเสาร์หุ้มเกราะ และเป็นงานวิจัยแรกที่มุ่งเป้าไปที่การศึกษาฟอสซิลของเนื้อเยื่อ ซึ่งไม่เคยเกิดขึ้นมาก่อน “มันยากที่จะพิจารณาการใช้งานจากรูปร่างของอวัยวะ แม้แต่ในสัตว์ที่ยังมีชีวิตอยู่ก็ตาม” Victoria Arbour นักชีววิทยาผู้เชี่ยวชาญด้านไดโนเสาร์หุ้มเกราะโดยเฉพาะ […]