รังสีคอสมิก (Cosmic Rays) - เนชั่นแนล จีโอกราฟฟิก ฉบับภาษาไทย

รังสีคอสมิก (Cosmic Rays)

รังสีคอสมิก อนุภาคพลังงานสูงจากนอกโลก มีองค์ประกอบหลัก คือ อนุภาคโปรตอน (Proton) และนิวเคลียสของธาตุต่าง ๆ ที่เป็นต้นกำเนิดของทั้งจักรวาล กาแล็กซี และดาวเคราะห์ต่าง ๆ 

รังสีคอสมิก (Cosmic Rays) คือ อนุภาคพลังงานสูงจากนอกโลก เป็นสสารที่เคลื่อนที่ผ่านอวกาศด้วยความเร็วเทียบเท่าความเร็วแสง โดยมีองค์ประกอบหลัก คือ อนุภาคโปรตอน (Proton) และนิวเคลียสของธาตุต่าง ๆ ที่เป็นต้นกำเนิดของทั้งจักรวาล กาแล็กซี และดาวเคราะห์ต่าง ๆ เช่น นิวเคลียสของธาตุไฮโดรเจน ฮีเลียม คาร์บอน ออกซิเจน นีออน แมกนีเซียม ซิลิคอน และเหล็ก เป็นต้น

แหล่งกำเนิดและการเดินทางในห้วงอวกาศของรังสีคอสมิก

รังสีคอสมิกประกอบด้วยอนุภาคโปรตอนซึ่งมีประจุบวกเป็นหลัก ดังนั้น เมื่อรังสีคอสมิกเดินทางผ่านห้วงอวกาศที่มีสนามแม่เหล็กกระจายตัวอยู่ทั่วทุกแห่งหน อนุภาคเหล่านี้จะถูกบังคับให้เปลี่ยนแปลงทิศทางในการเคลื่อนที่ ทำให้นักฟิสิกส์และนักดาราศาสตร์ไม่สามารถระบุแหล่งที่มาของอนุภาคคอสมิกเหล่านี้ได้อย่างชัดเจน อีกทั้ง เมื่อรังสีคอสมิกเดินทางมาถึงโลก สนามแม่เหล็กโลกมีส่วนที่ทำให้อนุภาคคอสมิกต้องเบี่ยงเบนทิศทางการเคลื่อนที่เช่นเดียวกัน ประกอบกับความไม่สม่ำเสมอของความเข้มสนามแม่เหล็กโลก (ความเข้มของสนามแม่เหล็กโลกมีค่าสูงสุดที่บริเวณขั้วโลกและต่ำสุดบริเวณเส้นศูนย์สูตร) ทำให้ปริมาณของอนุภาคคอสมิกที่ตรวจวัดได้ในแต่ละพื้นที่ของโลกมีค่าไม่คงที่แน่นอน

การเดินทางของรังสีคอสมิกมายังโลก

แต่อย่างไรก็ตาม เมื่อการศึกษาและงานวิจัยด้านรังสีคอสมิกรุดหน้าไปไกล ทำให้เกิดการค้นพบอนุภาคอีกหลายชนิดที่เกิดขึ้น เมื่ออนุภาคคอสมิกพุ่งชนอะตอมของธาตุที่มีอยู่ในชั้นบรรยากาศโลก เป็นตัวกำเนิดของฝนอนุภาคมูลฐานชนิดต่างๆ รวมถึงการค้นพบนิวเคลียสของธาตุใหม่ ๆ ในรังสีคอสมิก เช่น ลิเทียม เบริลเลียม และโบรอน ซึ่งส่งผลให้นักดาราศาสตร์ค้นพบองค์ประกอบของรังสีคอสมิกที่สามารถบ่งบอกแหล่งที่มาอย่างคร่าว ๆ รวมถึงประวัติการเดินทางในอวกาศของพวกมัน อย่างเช่น การได้รับพลังงานจากการระเบิดอย่างรุนแรงของดวงดาวที่เรียกว่า “มหานวดารา” หรือ “ซูเปอร์โนวา” (Supernova) และการเดินทางผ่านคลื่นการระเบิดและเศษซากของมหานวดาราที่สามารถคงอยู่ได้ยาวนานหลายพันปีที่สุดท้ายทำให้อนุภาคเหล่านี้มีพลังงานมาพอจะเดินทางผ่านห้วงอวกาศด้วยตนเอง

“มหานวดารา” หรือ “ซูเปอร์โนวา” (Supernova)

ประเภทของรังสีคอสมิก

  • รังสีคอสมิกจากดวงอาทิตย์ (Solar Cosmic Rays) คือ อนุภาคพลังงานสูงที่เกิดจากการระเบิดในชั้นบรรยากาศของดวงอาทิตย์ที่เรียกว่า “เปลวสุริยะ” หรือการลุกจ้าของดวงอาทิตย์ (Solar Flare) และถูกเร่งโดยลมสุริยะ (Solar Wind) ที่ทำให้เกิดการปลดปล่อยอนุภาคพลังงานสูงเหล่านี้ออกสู่ห้วงอวกาศ
เปลวสุริยะ
  • รังสีคอสมิกจากนอกระบบสุริยะ (Extragalactic/Galactic Cosmic Rays) คือ รังสีที่เดินทางผ่านห้วงอวกาศมายังโลก ผ่านการได้รับพลังงานปริมาณมหาศาลจากเหตุการณ์ต่าง ๆ ที่เกิดขึ้นในจักรวาล เช่น การระเบิดของซูเปอร์โนวาจากกาแล็กซีอื่นหรือจากเศษซากการระเบิดของซูเปอร์โนวาในอดีต

รังสีคอสมิกและอันตรายนอกโลก

รังสีคอสมิกพุ่งชนชั้นบรรยากาศของโลกตลอดเวลา ซึ่งในทางดาราศาสตร์มีการเรียกรังสีชนิดนี้ว่า “รังสีคอสมิกปฐมภูมิ” (Primary Cosmic Rays) หมายถึงอนุภาคคอสมิกพลังงานสูงที่พุ่งชนกับโมเลกุลของก๊าซต่าง ๆ ในบรรยากาศชั้นบนของโลก โดยเฉพาะอะตอมของธาตุไนโตรเจนและออกซิเจน ซึ่งก่อให้เกิด “รังสีคอสมิกทุติยภูมิ (Secondary Cosmic Rays)” หรือปรากฏการณ์ฝนอนุภาค (Air shower) ที่เป็นต้นกำเนิดของอนุภาคต่าง ๆ เช่น อนุภาคพายออน (Pion) มิวออน (Muon) เคออน (Kaon) โพสิตรอน (Positron) และนิวตรอน (Neutron) ที่กระจายตัวตกลงสู่พื้นผิวโลก

ฝนอนุภาค

สนามแม่เหล็กโลกและชั้นบรรยากาศของโลกปกป้องมนุษย์และสิ่งมีชีวิตจากรังสีคอสมิกกว่าร้อยละ 99 แต่สำหรับผู้ที่อยู่นอกสนามแม่เหล็กโลก โดยเฉพาะนักบินอวกาศและเครื่องมือทางดาราศาสตร์ที่ถูกส่งออกไปอยู่ในอวกาศต่างได้รับผลกระทบที่เป็นอันตรายร้ายแรงจากรังสีคอสมิกนี้ อย่างเช่น การเดินทางไปสำรวจดาวอังคารของยานคิวริออซิตี้ (Curiosity) ของนาซ่า (NASA) ที่ใช้เวลากว่า 253 วันในอวกาศ มีการเปิดเผยถึงปริมาณรังสีที่นักบินอวกาศมีโอกาสได้รับในการเดินทางไปกลับโลกดาวอังคารในระยะทางที่สั้นที่สุด (ราว 6 เดือน) อยู่ที่ราว 0.66 ซีเวิร์ต (Sievert: Sv) ซึ่งมากกว่าปริมาณรังสีที่คนงานซึ่งเข้าจัดการกับเหตุการณ์โรงไฟฟ้านิวเคลียร์ระเบิดที่ฟุกุชิมะในปี ค.ศ. 2011 ได้รับอนุญาตให้สะสมมากกว่า 2 เท่า (0.25 ซีเวิร์ต) หรือเปรียบได้กับการได้รับซีที สแกน (CT Scan) ทั่วทั้งตัวในทุก ๆ 5 หรือ 6 วัน ซึ่งการได้รับรังสีในปริมาณ 1 ซีเวิร์ต สามารถเพิ่มโอกาสและความเสี่ยงต่อการเป็นมะเร็งร้ายแรงมากถึงร้อยละ 5.5 ขณะที่ประชาชนทั่วไปบนโลกได้รับรังสีเพียง 0.00001 ซีเวิร์ต เท่านั้นเอง

สืบค้นและเรียบเรียง
คัดคณัฐ ชื่นวงศ์อรุณ


อ้างอิง

สถาบันวิจัยดาราศาสตร์แห่งชาติ (NARIT) – http://old.narit.or.th

National Aeronautics and Space Administration (NASA) – https://www.nasa.gov

Staten Island Advance – https://www.youtube.com

กรมควบคุมการปฏิบัติทางอากาศ – http://weather.rtaf.mi.th

สถาบันเทคโนโลยีนิวเคลียร์แห่งชาติ – http://www0.tint.or.th


เรื่องอื่น ๆ ที่น่าสนใจ : เทคโนโลยีอวกาศ (Space Technology)

เรื่องแนะนำ

พี่น้องก็จริง แต่กลับมีดีเอ็นเอของบรรพบุรุษต่างกัน

แคทและเอ็ดดี้เข้ารับการตรวจสอบดีเอ็นเอ พวกเขาต้องประหลาดใจกับผลการทดสอบเมื่อผลการวิเคราะห์บ่งชี้ว่า ดีเอ็นเอของแคทมีบรรพบุรุษจากกรีซและอิตาลีราว 13% ส่วนเอ็ดดี้มี 23%

นากโบราณขนาดเท่าหมาป่า มีแรงกัดมหาศาล

เรื่อง เจสัน จี.โกลด์แมน เมื่อ 6 ล้านปีก่อน นากน้ำหนักประมาณร้อยปอนด์เที่ยวเดินด้อมๆ มองๆ อยู่ตามพื้นที่ชุ่มน้ำที่ซึ่งปัจจุบันคือทางตะวันตกเฉียงใต้ของจีน แตกต่างจากนากในปัจจุบันที่ใช้ก้อนหินทุบเปลือกหอยเม่นตามอ่าวแปซิฟิกทางตอนเหนือของอเมริกาหรือในเอเชีย สิ่งมีชีวิตโบราณเหล่านี้ทำลายเปลือกหอยด้วยกรามอันแข็งแรงของพวกมัน ขอเชิญพบกับ  Siamogale melilutra บรรพบรุษของนากที่ถูกค้นพบในมณฑลยูนนานของจีน และเรื่องราวของมันเพิ่งจะถูกเปิดเผยเมื่อต้นปี 2017 ที่ผ่านมา ในผลการศึกษาใหม่ ทีมนักวิจัยตรวจสอบฟอสซิลขากรรไกรของมัน และตั้งข้อสันนิษฐานว่าพวกมันอาจเป็นนักล่ากลุ่มสุดท้ายจากปลายยุคไมโอซีน ที่มีขากรรไกรแข็งแรงสำหรับการบดเคี้ยว ซึ่งช่วยให้มันล่าอาหารได้หลากหลายมากขึ้น “เราคิดว่ามันอาจล่าพวกสัตว์ไม่มีกระดูกสันหลังที่มีเปลือก แต่ระดับความสามารถในการหาอาหารของพวกมันขณะนี้ เรามองเห็นแค่ความเป็นไปได้จากนากที่ยังมีชีวิตอยู่ในปัจจุบันเท่านั้น” Z. Jack Tseng หัวหน้าการวิจัยจากมหาวิทยาลัยแห่งรัฐนิวยอร์ก เมืองบัฟฟาโลกล่าว การค้นพบครั้งนี้ไม่เพียงแต่ฉายให้เห็นวิถีชีวิตของนากโบราณ แต่ยังช่วยไขปริศนาของพฤติกรรมนากในปัจจุบันด้วย โดยเฉพาะอย่างยิ่งการที่มันรู้จักใช้สิ่งของตามธรรมชาติมาเป็นเครื่องมือ ปัจจุบันนากถูกแบ่งออกเป็น 2 กลุ่ม คือกลุ่มที่กินพวกสัตว์มีเปลือกอย่างปู, หอย, เม่นทะเล และพวกที่ล่าปลาเป็นอาหาร ในการจะเข้าใจการหากินของ Siamogale เจ้านากโบราณที่เคยมีชีวิตอยู่บนโลกนี้ Tseng และทีมงานของเขารวบรวมขากรรไกรและกระโหลกของนากจำนวน 10 ใน 13 สายพันธุ์ที่ยังมีชีวิตอยู่ เพื่อสร้างแบบจำลอง 3 มิติของนากโบราณขึ้นมาใหม่จากฟอสซิลของขากรรไกร เมื่อกล้ามเนื้อขากรรไกรขยับ พลังงานจะถูกส่งผ่านมายังกระดูกและฟัน […]

ขยะอิเล็กทรอนิกส์ (e-Waste)

ขยะอิเล็กทรอนิกส์ (e-Waste) ซากอุปกรณ์อิเล็กทรอนิกส์ชนิดต่าง ๆ ทั้งที่ใกล้หมดอายุการใช้งาน ล้าสมัย ในยุคที่ความก้าวหน้าทางเทคโนโลยีได้พัฒนาระบบการสื่อสารและอุปกรณ์อิเล็กทรอนิกส์ให้รุดหน้าไปอย่างรวดเร็ว ทำให้อุปกรณ์อิเล็กทรอนิกส์ที่ถูกทิ้งมีปริมาณเพิ่มสูงขึ้นทุกปี ขยะอิเล็กทรอนิกส์ (Electronic Waste หรือ E-waste) คือ ผลิตภัณฑ์ในกลุ่มเครื่องใช้ไฟฟ้าและซากอุปกรณ์อิเล็กทรอนิกส์ชนิดต่าง ๆ ทั้งที่ใกล้หมดอายุการใช้งาน ล้าสมัย และไม่เป็นที่ต้องการของเจ้าของอีกต่อไป ซึ่งกลายเป็นขยะถูกทิ้งหรือถูกส่งต่อไปยังสถานีรีไซเคิล ซาเล้ง หรือร้านรับซื้อของเก่า เพื่อนำไปคัดแยกชิ้นส่วนและกำจัดเศษซากของอุปกรณ์ที่เหลือ ในยุคที่ความก้าวหน้าทางเทคโนโลยีได้พัฒนาระบบการสื่อสารและอุปกรณ์อิเล็กทรอนิกส์ให้รุดหน้าไปอย่างรวดเร็ว ได้ส่งผลกระทบโดยตรงต่อพฤติกรรมของกลุ่มผู้บริโภค โดยเฉพาะการเปลี่ยนถ่ายเครื่องใช้ไฟฟ้าและอุปกรณ์อิเล็กทรอนิกส์ใหม่ ๆ ที่เกิดขึ้นบ่อยครั้งยิ่งกว่าที่เคย ทำให้อุปกรณ์อิเล็กทรอนิกส์ที่ถูกทิ้งมีปริมาณเพิ่มสูงขึ้นทุกปี โดยเฉพาะในประเทศไทยที่ยังขาดความตระหนักรู้ ความเข้าใจ และระบบการบริหารจัดการซากผลิตภัณฑ์เครื่องใช้ไฟฟ้าและอิเล็กทรอนิกส์ที่มีประสิทธิภาพ ส่งผลให้ชิ้นส่วนของขยะอิเล็กทรอนิกส์ที่มีส่วนประกอบของสารอันตรายถูกปล่อยปละละเลยและถูกทิ้งรวมไปกับขยะทั่วไป โดยปราศจากการขัดแยก การจัดการกับชิ้นส่วนต่าง ๆ และการกำจัดที่เหมาะสม จนกลายเป็นภัยต่อระบบนิเวศและสิ่งแวดล้อม ขยะอิเล็กทรอนิกส์สามารถจำแนกออกเป็น 10 ประเภท ตามระเบียบ WEEE (Waste from Electronic and Electronic Equipment) ของสหภาพยุโรป ดังนี้ เครื่องใช้ไฟฟ้าและอุปกรณ์อิเล็กทรอนิกส์ขนาดใหญ่ภายในครัวเรือน เช่น ตู้เย็น เครื่องซักผ้า […]