10 เรื่องน่ารู้เกี่ยวกับ คลื่นสึนามิ จากเหตุภูเขาไฟอานักกรากาตัวระเบิด

10 เรื่องน่ารู้เกี่ยวกับ คลื่นสึนามิ จากเหตุภูเขาไฟอานักกรากาตัวระเบิด  

10 เรื่องน่ารู้เกี่ยวกับ คลื่นสึนามิ

จากเหตุภูเขาไฟอานักกรากาตัวระเบิด

1. คลื่นสึนามิ ที่ถาโถมสู่ชายฝั่งเกาะสุมาตราและเกาะชวา เมื่อคืนวันที่ 22 ธันวาคม ก่อนเวลา 21.30 น. เล็กน้อยตามเวลาในท้องถิ่น เกิดขึ้นโดยปราศจากคำเตือนใดๆ ตัวเลขผู้เสียชีวิตยังคงพุ่งสูงขึ้น (ตัวเลขล่าสุดจากสำนักข่าวต่างประเทศรายงานว่า ยอดผู้เสียชีวิตสูงเกิน 400 คน บาดเจ็บกว่า 1,400 คน) ยังไม่รวมถึงความเสียหายของบ้านเรือนและทรัพย์สินต่างๆ

2. เหตุผลเบื้องหลังการปราศจากคำเตือนใดๆ ถึง คลื่นสึนามิในครั้งนี้ คือที่มาของคลื่นมรณะที่อยู่เหนือความคาดหมาย สึนามิในครั้งนี้แตกต่างจากเหตุการณ์ในอดีตที่สาเหตุส่วนใหญ่มาจากแผ่นดินไหว  เป็นไปได้อย่างยิ่งว่าสึนามิครั้งล่าสุดนี้เกิดจากการพังทลายของภูเขาไฟนอกชายฝั่ง

คลื่นสึนามิ
ธารลาวาไหลลงมาตามเชิงภูเขาไฟอานักกรากาตัว (“บุตรแห่งกรากาตัว”) ระหว่างการปะทุครั้งหนึ่งเมื่อเดือนกรกฎาคม ภาพนี้ถ่ายจากเกาะซึ่งอยู่ใกล้กัน (ภาพถ่าย: El Ghazali/Barcroft Media/Getty)

3. อสุรกายทางธรณีวิทยาที่อยู่เบื้องหลังเหตุการณ์นี้คือ ภูเขาไฟอานักกรากาตัว (Anak Krakatau) ที่คุกรุ่นและปะทุต่อเนื่องมาตั้งแต่วันที่ 18 มิถุนายน ปีนี้ แม้รายละเอียดต่างๆ ของลำดับเหตุการณ์ที่นำไปสู่การเกิดคลื่นสึนามิ ยังคงออกมาอย่างต่อเนื่อง หลักฐานส่วนใหญ่เท่าที่ปรากฏชี้ไปยังแผ่นดินถล่ม (landslide) ที่เกี่ยวข้องกับกิจกรรมภูเขาไฟ ภาพถ่ายจากดาวเทียม Sentinel-1 ขององค์การอวกาศยุโรปชี้ว่า ชิ้นส่วนขนาดมหึมาจากเชิงด้านตะวันตกของภูเขาไฟเลื่อนไหลลงสู่มหาสมุทร

4. เหตุการณ์ทำนองนี้ไม่ใช่เรื่องผิดปกติ Mika Mckinnon นักธรณีฟิสิกส์ชี้ว่า “ภูเขาไฟก็เหมือนชั้นหินที่ติดกาวอยู่ด้วยกันอย่างหลวมๆ ทุกครั้งที่เกิดการปะทุ ชั้นหินเหล่านี้มีแนวโน้มที่จะเคลื่อนตัวลงสู่เบื้องล่าง” การที่ชิ้นส่วนขนาดใหญ่จะเคลื่อนตัวลงมาไม่ใช่เรื่องยาก และหากมีขนาดใหญ่พอ ย่อมสามารถส่งคลื่นขนาดมหึมาเข้าสู่ชายฝั่งได้โดยแทบไม่มีการเตือนล่วงหน้า

คลื่นสึนามิ
ภูเขาไฟอานักกรากาตัว (Anak Krakatau แปลว่า บุตรแห่งกรากาตัว) แวดล้อมไปด้วยกลุ่มเกาะขนาดเล็กในช่องแคบซุนดา ระหว่างเกาะชวาและเกาะสุมาตรา (ภาพถ่าย: Gallo Images/Orbital Horizon/Copernicus Sentinel Data 2018)

5. คลื่นสึนามิส่วนใหญ่เกิดจากการเคลื่อนตัวของแผ่นเปลือกโลกทั้งในแนวดิ่ง (เช่น เหตุการณ์สึนามิครั้งรุนแรงที่สุดครั้งหนึ่งในประวัติศาสตร์เมื่อปี 2004 หรือ 14 ปีก่อนในมหาสมุทรอินเดีย และแนวราบ (เช่น สึนามิเมื่อเดือนกันยายนที่ผ่านมาบนเกาะสุลาเวสีของอินโดนีเซีย  นอกจากนี้ ยังอาจเกิดจากการแตกตัวของภูเขาน้ำแข็ง แผ่นดินถล่ม และภูเขาไฟระเบิด

6. ภูเขาไฟอานักกรากาตัวซึ่งตั้งอยู่ในช่องแคบซุนดาระหว่างเกาะสุมาตราและเกาะชวา คือผลิตผลของภูเขาไฟในตำนานนามว่า ภูเขาไฟกรากาตัว (Krakatoa หรือ Krakatau) ที่ระเบิดเมื่อเดือนสิงหาคม ค.ศ. 1883 และได้รับการบันทึกว่า อาจเป็นการระเบิดของภูเขาไฟครั้งใหญ่ที่สุดครั้งหนึ่งในประวัติศาสตร์ ในครั้งนั้น คลื่นสึนามิสูง 41 เมตรคร่าชีวิตผู้คนไปมากกว่า 30,000 คน และอีกหลายพันคนตายจากเถ้าถ่านภูเขาไฟ ว่ากันว่าแรงระเบิดครั้งนั้นมีอานุภาพมากกว่าระเบิดปรมาณูที่ทิ้งลงเหนือเมืองฮิโรชิมาเมื่อปี 1945 ถึง 13,000 เท่า เสียงระเบิดได้ยินไปไกลหลายร้อยกิโลเมตร อุณหภูมิของโลกลดลงมากกว่าหนึ่งองศาเซลเซียสในปีถัดมา เกาะซึ่งเป็นที่ตั้งของภูเขาไฟถึงกับอันตรธานไป และในปี 1927 เกาะแห่งใหม่ชื่อ อานักกรากาตัว ซึ่งแปลว่า “บุตรแห่งกรากราตัว” ก็ก่อตัวขึ้น

คลื่นสึนามิ
ชาวบ้านในท้องถิ่นค้นหาท่ามกลางเศษซากปรักหลังสึนามิถล่มจังหวัด Lampung ในอินโดนีเซีย เมื่อวันที่  23 ธันวาคมที่ผ่านมา บ้านเรือนหลายร้อยหลังพังทลาย ขณะที่มีรายงานว่าชาวบ้านในท้องถิ่นหลายสิบคนเสียชีวิต (ภาพถ่าย: RIAU Images/Barcroft Media/Getty)

7. ต้นกำเนิดของคลื่นสึนามิที่มาจากเหตุภูเขาไฟระเบิดในครั้งนี้สร้างความงุนงงและประหลาดใจให้แม้แต่กับผู้เชี่ยวชาญ แตกต่างจากสึนามิที่เกิดจากแผ่นดินไหวซึ่งสามารถคาดการณ์ล่วงหน้าได้ในระดับหนึ่ง อันที่จริง นักวิจัยสามารถตรวจจับเสียงครืนครั่นความถี่ต่ำได้ในช่วงเวลาใกล้เคียงกับที่เกิดสึนามิ  ซึ่งให้เบาะแสว่าแผ่นดินถล่มน่าจะเป็นสาเหตุของสึนามิ นักวิทยาศาสตร์เพิ่งเริ่มศึกษาสัญญาณความถี่ต่ำเหล่านี้ได้ไม่นาน ซึ่งส่วนใหญ่เกี่ยวข้องกับกิจกรรมภูเขาไฟ เช่น การเคลื่อนตัวของหินหนืดหรือแมกมาใต้ดิน การถล่มของคูหาภูเขาไฟ หรือแม้แต่การแตกตัวของภูเขาน้ำแข็งและแผ่นดินถล่มใต้ทะเล เป็นต้น

8. Andreas Schäffer นักวิจัยหลังปริญญาเอกที่ Karlsruhe Institute of Technology ทำการจำลองเหตุการณ์เพื่อวิเคราะห์ถึงสิ่งที่เกิดขึ้นโดยอาศัยข้อมูล อาทิ เวลาที่คลื่นมาถึงฝั่ง และลักษณะภูมิประเทศของภูมิภาคแถบนั้น ความเร็วของคลื่นกำหนดจากความลึกของน้ำ ขณะที่ความสูงของคลื่นเกี่ยวข้องกับการเลื่อนไหลของแผ่นดิน เมื่อนำข้อมูลเหล่านี้มาประกอบกันในแบบจำลอง Schäffer พบว่า แผ่นดินถล่มนั้นเกิดขึ้นในแนวตะวันออกเฉียงใต้หรือตะวันตกเฉียงใต้ และคลื่นใช้เวลาเดินทางระหว่าง 30-35 นาทีจนถึงฝั่ง จนถึงตอนนี้ ข้อมูลที่ยืนยันได้ชี้ว่า คลื่นกระทบฝั่งจุดแรก ณ Marina Jambu บนเกาะชวา

คลื่นสึนามิ
ภาพถ่ายทางอากาศเผยให้เห็นความเสียหายในเขต Carita เมื่อวันที่ 23 ธันวาคม หลังสึนามิพัดถล่ม (ภาพถ่าย: Azwar Ipank/AFP/Getty

9. “บุตรแห่งกรากาตัว” หรือภูเขาไฟอานักกรากาตัว คุกรุ่นมาต่อเนื่องยาวนาน โดยครั้งหลังสุดส่งพวยควันและเถ้าถ่านภูเขาไฟขึ้นสู่ท้องฟ้าเป็นเวลานานถึงหกเดือน ย้อนหลังไปเมื่อปี 2012 นักวิจัยจำลองเหตุการณ์ที่อาจเกิดขึ้นเมื่อเชิงภูเขาไฟด้านตะวันตกเกิดถล่มทลาย พวกเขาสรุปว่า สึนามิที่เกิดตามมาอาจมีความสูงได้ถึง 20-30 เมตรและอาจถาโถมขึ้นฝั่งในเวลาเพียงไม่กี่นาที แม้ความเสี่ยงในการเกิดสึนามิจากภูเขาไฟลูกนี้จะไม่ใช่เรื่องใหม่ แต่นั่นไม่ได้หมายความว่าเราจะสามารถทำนายหรือบอกได้ว่า จะเกิดขึ้นเมื่อใดและรุนแรงเพียงใด

10. แม้นักวิทยาศาสตร์จะสามารถวิเคราะห์เหตุการณ์ในอดีตเพื่อจำลองเหตุการณ์ในอนาคต แต่การจะทำนายหรือเตือนภัยสึนามิที่เกิดจากเหตุภูเขาไฟระเบิดหรือแผ่นดินถล่มในท้องถิ่นยังแทบเป็นไปไม่ได้ โศกนาฏกรรมที่เกิดจากคลื่นสึนามิรุนแรงที่สุดครั้งหนึ่งเมื่อปี 2004 หรือ 14 ปีก่อนนำไปสู่การศึกษาและการนำระบบเตือนภัยสึนามิที่เกิดจากแผ่นดินไหวมาใช้อย่างกว้างขวางในภูมิภาค ทว่าเหตุการณ์ล่าสุดในครั้งนี้ และเหตุ “สึนามิเหนือความคาดหมาย” อีกครั้งเมื่อเดือนกันยายนใกล้เมืองปาลู ก็ตอกย้ำถึงความจำเป็นที่เราต้องศึกษาวิจัยเพิ่มเติม โดยเฉพาะในกรณีของสึนามิที่เกิดจากกิจกรรมภูเขาไฟซึ่งเปลี่ยนแปลงไปตามกาลเวลา

 


อ่านเพิ่มเติม

10 อันดับสึนามิร้ายแรงที่สุดในประวัติศาสตร์

เรื่องแนะนำ

ซ่อมแซมโพรงรังหวังเพิ่มประชากรนกเงือก

สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.) หนุนซ่อมโพรงรังหวังเพิ่มประชากร นกเงือก ในเดือนมีนาคมถึงเมษายนของทุกปี ถือเป็นช่วงเวลาที่ นกเงือก เข้าสู่ฤดูผสมพันธุ์ โดยนกเงือกเริ่มจับคู่และเสาะหาโพรงรังที่เหมาะสมเพื่อให้ตัวเมียวางไข่และฟักไข่ แม้ในป่าฮาลา–บาลา ที่ขึ้นชื่อว่าเป็นผืนป่าที่อุดมสมบูรณ์มาก สัตว์โบราณอย่างนกเงือกยังต้องเผชิญภาวะ ‘การขาดแคลนโพรงรัง’ ซึ่งหนึ่งในปัจจัยสำคัญที่ส่งผลให้จำนวนประชากรนกเงือกลดลง สุเนตร การพันธ์ หัวหน้าสถานีวิจัยสัตว์ป่าป่าพรุ–ป่าฮาลา บาลา กล่าวว่า นกเงือกมีพฤติกรรมโดดเด่นเฉพาะตัวอย่างมากในเรื่องการสร้างโพรงรัง เมื่อนกเงือกหาโพรงรังที่เหมาะสมได้แล้ว นกเงือกตัวเมียจะปิดปากโพรงให้แคบลง โดยใช้มูล เศษไม้ และเศษดิน ค่อยๆ ปิดจนเหลือเพียงช่องแคบๆ เพื่อให้ตัวผู้ส่งอาหารให้เท่านั้น ตลอดช่วงระยะเวลาที่นกเงือกตัวเมียทำรัง นกเงือกตัวผู้มีหน้าที่หาอาหารมาป้อนให้ตัวเมีย เมื่อถึงช่วงลูกนกฟักออกจากไข่ นกเงือกตัวผู้ยังคอยหาอาหารมาให้ทั้งนกเงือกตัวเมียและลูกนก โดยช่วงเวลาการอยู่ในโพรงของแม่นกและลูกนกของนกเงือกแต่ละชนิดไม่เท่ากัน แต่เฉลี่ยแล้วประมาณ 4 – 6 เดือน ซึ่งเมื่อลูกนกออกจากรัง พ่อและแม่นกจะคอยเลี้ยงลูกนกต่อไปอีกระยะหนึ่ง โพรงรังที่มีสภาพเหมาะสมคือปัจจัยสำคัญต่อการขยายพันธุ์ของนกเงือกตามธรรมชาติ แต่ปัจจุบันโพรงรังของนกเงือกเริ่มขาดแคลน ปัญหาคือนกเงือกไม่สามารถเจาะโพรงสร้างรังเองได้เช่นเดียวกับนกทั่วไป ต้องหาโพรงรังที่เกิดขึ้นเองตามธรรมชาติ เช่น โพรงไม้ที่เกิดจากการเจาะของนกหัวขวาน รอยแผลบนต้นไม้ที่เกิดจากหมีล้วงเอาน้ำผึ้ง หรือรอยจากการที่กิ่งไม้หักจนทำให้เกิดแผลและมีขนาดกว้างพอที่นกเงือกจะเข้าไปอยู่อาศัยได้ อีกทั้งโพรงที่จะใช้ทำรังได้ต้องมีสภาพที่เหมาะสม คือไม่ใหญ่และไม่เล็กจนเกินไป ถ้ามีขนาดใหญ่จนเกินไป เวลาปิดปากโพรงจะปิดได้ยาก หรือปิดไม่ได้ แต่ถ้าแคบเกินไปนกเงือกก็อยู่อาศัยไม่ได้ ที่สำคัญคือระดับพื้นในโพรงยังต้องมีความสูงพอดีที่นกเงือกนั่งแล้วจะสามารถยื่นปากออกมาจากโพรงเพื่อรับลูกไม้จากตัวผู้ได้ […]

นักวิทยาศาสตร์พบแล้วว่าดวงตาของปลาดาวมีไว้ทำอะไร

นักวิทยาศาสตร์พบแล้วว่าดวงตาของปลาดาวมีไว้ทำอะไร ปลาดาวหรือดาวทะเลมีดวงตาอยู่ที่ปลายสุดของแขนข้างละหนึ่งดวง แต่มีไว้ใช้สำหรับทำอะไรนั้น ยังคงเป็นปริศนา พวกมันถูกมองว่าเป็นสัตว์ที่มีโครงสร้างเรียบง่าย ไม่ซับซ้อน และด้วยดาวทะเลนั้นไม่มีสมอง จึงยากที่จะคาดเดาได้ว่าพวกมันเห็นภาพอะไรผ่านดวงตา ในปี 2014 นักวิจัยชี้ว่าดวงตาของดาวทะเลในภูมิภาคเขตร้อน สามารถมองเห็นภาพแบบหยาบๆ ได้ ซึ่งช่วยให้มันไม่เดินเตร็ดเตร่ไกลออกจากบ้านมากเกินไป “ผลการศึกษานี้ช่วยให้เราเข้าใจว่าบรรดาดาวทะเลมองเห็นโลกอย่างไร” Christopher Mah นักวิจัยจากพิพิธภัณฑ์ธรรมชาติวิทยา Smithsonian ในกรุงวอชิงตัน ดี.ซี. กล่าวผ่านอีเมล์ และตอนนี้ผลการศึกษาใหม่ยังแสดงให้เห็นว่า แม้แต่ดาวทะเลจากทะเลลึกในอาร์กติกเองก็ใช้ภาพที่มันมองเห็นเพื่อนำทางเช่นกัน จากการศึกษาดาวทะเลทั้งหมด 13 สายพันธุ์ ในจำนวนนี้มีสองสายพันธุ์ที่เรืองแสงได้ด้วย นั่นหมายความว่าพวกมันใช้แสงสว่างในการสื่อสารกับดาวทะเลด้วยกัน ทีมนักวิทยาศาสตร์ได้ศึกษาดาวทะเลสายพันธุ์หนึ่งโดยเฉพาะ ที่อาศัยอยู่ในมหาสมุทรอินเดียและแปซิฟิก พวกมันมีชื่อว่าดาวทะเลสีน้ำเงิน (Linckia laevigata) ผลการศึกษาวิจัยถูกเผยแพร่ผ่านทางออนไลน์ลงในวารสาร  Proceedings of the Royal Society B เมื่อวันที่ 7 มกราคมปี 2014 ก่อนที่ผลการศึกษาใหม่กว่าจะถูกเผยแพร่ลงในวารสารเดิมเมื่อวันที่ 7 กุมภาพันธ์ที่ผ่านมา   ไม่เคยคาดคิดว่าจะมีความซับซ้อน จากประวัติศาสตร์ที่ผ่านๆ มา ดาวทะเลถูกพิจารณาว่าเป็นสัตว์เรียบง่าย ปราศจากโครงสร้างหรือพฤติกรรมอันซับซ้อน นักวิทยาศาสตร์รู้จักดาวทะเลมานานกว่า […]

ไนดาเรีย (Cnidaria) : ไฮดรา แมงกะพรุน และปะการัง

กลุ่มของสัตว์ลำตัวใส บางชนิดก็มีสีสันสวยงาม เหล่า ไนดาเรีย คือสัตว์ที่มีความหลากหลายมากที่สุดกลุ่มหนึ่งในท้องทะเล ซีเลนเทอราตา (Coelenterata) หรือในปัจจุบันถูกเรียกว่า ไนดาเรีย (Cnidaria) คือ หนึ่งในเก้าไฟลัมของอาณาจักรสัตว์ตามการจัดจำแนกสิ่งมีชีวิตด้วยหลักอนุกรมวิธานวิทยา (Taxonomy) สัตว์ในไฟลัมไนดาเรียส่วนใหญ่คือสัตว์ที่อาศัยอยู่ในทะเล ได้แก่ ปะการัง กัลปังหา ดอกไม้ทะเล และแมงกะพรุน โดยมีเพียงบางส่วนที่อาศัยอยู่ในแหล่งน้ำจืด เช่น ไฮดรา และแมงกะพรุนน้ำจืด ในปัจจุบัน สัตว์ในไฟลัมไนดาเรียมีอยู่ราว 9,000 ชนิด เป็นสิ่งมีชีวิตที่นับว่ามีวิวัฒนาการสูงขึ้นกว่าสัตว์ในไฟลัมพอริเฟอรา แต่ยังถือเป็นสิ่งมีชีวิตดึกดำบรรพ์หรือเหล่าบรรพบุรุษของสัตว์หลายเซลล์ที่มีเนื้อเยื่อที่แท้จริงทั้งหลาย  [คำว่า “ไนเดีย” (Cnidae) มีความหมายว่า “ต่อย” หรือ “ทำร้าย” ในภาษาละติน] ลักษณะสำคัญของสัตว์ในไฟลัมไนดาเรีย มีเนื้อเยื่อที่แท้จริง แต่ไม่มีอวัยวะหรือระบบต่าง ๆ ภายในร่างกายที่สมบูรณ์ : มีปากแต่ไม่มีทวารหนัก ดังนั้น ทั้งการกินอาหารและขับถ่ายล้วนอาศัยช่องทางเดินอาหารที่อยู่บริเวณกลางลำตัวที่เรียกว่า “แกสโทรวาสคูลาร์ คาวิตี” (Gastrovascular Cavity) ทำหน้าที่เป็นทั้งทางเดินอาหารและระบบหมุนเวียนสสาร โดยมีเซลล์ชนิดพิเศษหรือเซลล์ที่ทำหน้าที่ในการย่อยอาหาร (Nutritive Cell) ซึ่งแทรกอยู่ที่เนื้อเยื่อชั้นในทำหน้าที่ย่อยและดูดซึมสารอาหาร ก่อนส่งไปยังส่วนต่าง ๆ […]

โครงสร้างของโลก (Structure of the Earth)

โครงสร้างของโลก หลังการถือกำเนิดเมื่อกว่า 4,500 ล้านปีที่แล้ว โลก (Earth) ผ่านการปะทะและหลอมรวมกันของสสาร กลุ่มก๊าซ และธาตุต่างๆ มากมาย จากเศษซากการกำเนิดของดวงอาทิตย์ในระบบสุริยะ จนมีมวล ขนาดและรูปร่างอย่างที่เราเห็นอยู่ในปัจจุบัน แต่ความเคลื่อนไหวและการเปลี่ยนแปลงภายในดาวเคราะห์หินดวงนี้ไม่เคยหยุดนิ่ง การเปลี่ยนแปลงที่ก่อให้เกิดทั้งประโยชน์และอันตรายต่อสิ่งมีชีวิต ดังนั้น โครงสร้างของโลก และองค์ประกอบภายใน จึงยังคงเป็นหัวข้อสำคัญ สำหรับนักวิทยาศาสตร์ในการศึกษาและทำความเข้าใจต่อดาวเคราะห์ดวงเดียวในจักรวาล ณ ขณะนี้ ที่มีปัจจัยสมบูรณ์ต่อการดำรงอยู่ของสิ่งมีชีวิต การศึกษาโครงสร้างโลก มนุษย์ทำการศึกษาโครงสร้างภายในของโลกผ่านการสังเกต การเก็บหลักฐาน และการทดลองทางวิทยาศาสตร์มากมาย เช่น  การศึกษาผ่านหินแปลกปลอม (Xenolith) ซึ่งถูกนำพาขึ้นมาบนผิวโลกพร้อมกับลาวา จากการปะทุ หรือการระเบิดของภูเขาไฟ การขุดเจาะและการสำรวจใต้พิภพ และภายใต้พื้นดินที่ลึกลงไปนี้ องค์ประกอบบางส่วนของโลกยังคงเป็นหินหลอมเหลวอยู่ รวมถึงการศึกษาหินอุกกาบาต (Meteorite) ซึ่งเป็นวัตถุที่เหลือจากการกำเนิดของระบบสุริยะ ทำให้นักวิทยาศาสตร์สันนิษฐานว่าส่วนหนึ่งของวัตถุก่อกำเนิดนี้ ทำให้โลกของเรามีเหล็ก (Fe) และนิกเกิล (Ni) เป็นองค์ประกอบหลัก อ่านเพิ่มเติมเรื่อง ดาวฤกษ์ นอกจากนี้ นักวิทยาศาสตร์ยังได้นำคลื่นไหวสะท้อน (Seismic waves) เพื่อศึกษาโครงสร้างภายในของโลก คลื่นไหวสะท้อน คือ คลื่นกลที่เกิดจากแรงสั่นสะเทือนของแผ่นดินไหว […]