เบื้องหลังสึนามิเหนือความคาดหมายจาก แผ่นดินไหวอินโดนีเซีย

เบื้องหลังสึนามิเหนือความคาดหมายจากแผ่นดินไหวอินโดนีเซีย

เบื้องหลังสึนามิเหนือความคาดหมายจาก แผ่นดินไหวอินโดนีเซีย

เย็นวันศุกร์ 28 กันยายน 2561 ที่ผ่านมา ตรงกับเวลา 17.02 น. ตามเวลาท้องถิ่น แผ่นดินไหวรุนแรงระดับ 7.5 แมกนิจูดสร้างแรงสั่นสะเทือนไปทั่วเกาะสุลาเวสีของอินโดนีเซีย วิดีโอคลิปเผยภาพน่าพรั่นพรึงของกำแพงน้ำที่เคลื่อนตัวเข้าสู่อ่าวแห่งหนึ่งใกล้เมืองปาลู ก่อนจะถาโถมซัดฝั่งอย่างต่อเนื่องรุนแรง ขณะที่ฝูงชนที่เฝ้าดูอยู่บนอาคารพากันแตกตื่น

นักวิทยาศาสตร์พากันประหลาดใจกับสึนามิที่เกิดขึ้นตามมา ส่งผลให้ประกาศเตือนภัยที่ออกมาขัดแย้งกัน กระนั้นผู้เชี่ยวชาญก็ชี้ว่า ลักษณะทางธรณีสัณฐานซึ่งมีลักษณะเฉพาะของพื้นที่อาจเป็นสาเหตุของหายนภัยที่เกิดขึ้นอย่างไม่คาดคิด

แผ่นดินไหวอินโดนีเซียครั้งใหญ่นี้เกิดขึ้นหลังแรงสั่นสะเทือนหลายระลอกตั้งแต่เวลาราว 14.00 น. เริ่มจากแผ่นดินไหวขนาด 6.1 แมกนิจูด  แผ่นดินไหวครั้งแรกนี้ไม่เพียงทำลายบ้านเรือนหลายสิบหลัง แต่ยังส่งผลให้มีผู้เสียชีวิตหนึ่งราย และบาดเจ็บอีกอย่างน้อย 10 ราย ตามรายงานของรอยเตอร์ แผ่นดินยังคงสั่นสะเทือนจากอาฟเตอร์ช็อกอีก 27 ครั้ง ก่อนจะส่งท้ายด้วยแรงสั่นสะเทือนรุนแรงที่เกิดขึ้นค่อนข้างตื้น นั่นคือแผ่นดินไหวขนาด 7.5 แมกนิจูดอยู่ลึกลงไปราว 10 กิโลเมตร ตามรายงานของสำนักงานธรณีวิทยาสหรัฐฯ นับจากนั้น ได้เกิดอาฟเตอร์ช็อกตามมาอีก 31 ครั้ง

ความเสียหายจากแผ่นดินไหวรุนแรงหลายระลอกยังไม่เป็นที่แน่ชัด แต่ดูเหมือนว่าการทำลายล้างจะกินบริเวณกว้าง หน่วยงานด้านภัยพิบัติทางธรรมชาติของอินโดนีเซีย (Badan Nasional Penanggulangan Bencana: BNPB) ระบุว่า แผ่นดินไหวทำให้ไฟฟ้าดับเป็นบริเวณกว้าง ส่งผลให้ระบบการสื่อสารขัดข้อง แต่เจ้าหน้าที่ในท้องถิ่นกำลังทำงานแข่งกับเวลาเพื่อกอบกู้สถานการณ์ รวมถึงกองทัพอินโดนีเซียได้จัดส่งกำลังพลลงพื้นที่เพื่อช่วยเหลือในภารกิจช่วยชีวิตและค้นหาผู้ประสบภัย

(สภาพอากาศรุนแรงสุดขั้ว ตัวการคร่าชีวิตในอนาคต?)

รายงานความเสียหายจนถึงค่ำวันอาทิตย์ตามเวลาในท้องถิ่น ยอดผู้เสียชีวิตพุ่งสูงถึง 832 คน และเจ้าหน้าที่เกรงว่า ตัวเลขอาจพุ่งสูงขึ้นอีก เนื่องจากทีมกู้ภัยและค้นหายังไม่สามารถเข้าถึงหลายพื้นที่ที่ประสบภัย ซึ่งรวมถึงเขต Donggala อันเป็นที่อยู่ของผู้คนถึง 300,000 คน เนื่องจากการติดต่อสื่อสารยังจำกัดและดินโคลนถล่มเป็นอุปสรรคสำคัญในการเข้าถึงพื้นที่

แผ่นดินไหวอินโดนีเซีย
ในภาพถ่ายเมื่อวันที่ 30 กันยายน ชาวเมืองพากันไปยังสนามบินเมืองปาลู โดยหวังจะโดยสารไปกับเที่ยวบินช่วยเหลือและอพยพผู้ประสบภัยหลังเกิดเหตุแผ่นดินไหวและสึนามิ
(ภาพถ่าย: YUSUF WAHIL, AFP, Getty Images)
แผ่นดินไหวอินโดนีเซีย
ผู้สูงอายุรอขึ้นเครื่องบินที่สนามบินเมืองปาลู ซึ่งกลับมาเปิดให้บริการอีกครั้งหลังเหตุแผ่นดินไหว
(ภาพถ่าย: Ulet Ifansasti, AFP, Getty Images)

 

คลื่นมรณะ

หน่วยงานพยากรณ์อากาศ ภูมิอากาศวิทยา และธรณีฟิสิกส์ (Agency for Meteorology, Climatology and Geophysics: BMKG) ออกประกาศเตือนเรื่องสึนามิในตอนแรก แต่หลังจากนั้นไม่นานก็ยกเลิกประกาศเตือนโดยอิงการวิเคราะห์ข้อมูลในขณะนั้น อย่างไรก็ตาม กำแพงคลื่นมหึมาก็เริ่มถาโถมขึ้นฝั่ง  ดังเห็นได้จากคลิปวิดีโอที่มีผู้บันทึกไว้ โดยเฉพาะคลิปที่ถ่ายจากอาคารจอดรถของห้างสรรพสินค้า Palu Grand Mall เผยให้เห็นมวลน้ำมหาศาลที่เคลื่อนตัวเข้าสู่ฝั่ง ก่อนที่ฝูงชนจะพากันแตกตื่นเพื่อเอาชีวิตรอด

ปกติแล้ว สึนามึมักเกิดจากการเคลื่อนตัวอย่างรุนแรงในแผ่นดินไหวใต้ทะเลโดยเฉพาะบริเวณชายขอบของแผ่นเปลือกโลก แผ่นดินไหวไม่ใช่เรื่องนอกเหนือความคาดหมายในอินโดนีเซีย เนื่องจากกลุ่มเกาะแห่งนี้ตั้งอยู่บนสิ่งที่เรียกว่า “วงแหวนอัคคี” หรือ Ring of Fire นั่นคือรอยต่อของแผ่นเปลือกโลกรูปทรงคล้ายเกือกม้าในมหาสมุทรแปซิฟิก บริเวณนี้เป็นที่เกิดของแผ่นดินไหวมากถึงราวร้อยละ 90 ของโลก

ทว่าคลื่นยักษ์กลับเป็นสิ่งที่อยู่เหนือความคาดหมายในเหตุแผ่นดินไหวลักษณะนี้

(พายุฝุ่นที่เกิดขึ้นในอินเดีย เหตุใดจึงส่งผลถึงตาย?)

แผ่นดินไหวอินโดนีเซีย
ผู้คนที่ได้รับผลกระทบจากแผ่นดินไหวและสึนามิรอการอพยพออกจากพื้นที่ประสบภัย
(ภาพถ่าย: Muhammad Adimaja, Antara Foto via REUTERS)
แผ่นดินไหวอินโดนีเซีย
ผู้รอดชีวิตจากเหตุแผ่นดินไหวขับรถจักรยานยนต์ผ่านซากเรือที่คลื่นสึนามิพัดมาเกยตื้นบนถนนในเมืองปาลู
(ภาพถ่าย: JEWEL SAMAD, AFP, Getty Images)

แผ่นดินไหวขนาด 7.5 แมกนิจูดในครั้งนี้ดูจะเป็นผลมาจากสิ่งที่เรียกว่า รอยเลื่อนตามแนวระดับ (strike-slip fault) ซึ่งเป็นรอยเลื่อนที่สองฟากของรอยเคลื่อนตัวเบียดอัดกันซึ่งส่วนใหญ่เกิดในแนวราบ ขณะนี่สึนามิส่วนใหญ่เกิดจากการเคลื่อนตัวในแนวดิ่งของรอยเลื่อนที่ส่งแรงไปยังมวลน้ำด้านบนจนนำไปสู่การเกิดกำแพงน้ำเคลื่อนตัวเข้าหาฝั่ง

“เป็นเรื่องเหนือความคาดหมายจริงๆ ครับ” Baptiste Gombert นักธรณีฟิสิกส์จากมหาวิทยาลัยออกซฟอร์ด ยอมรับและเสริมว่า ลักษณะธรณีสัณฐานของอินโดนีเซียซับซ้อนมาก เครือข่ายใยแมงมุมของรอยเลื่อนหลายชนิดพาดผ่านภูมิภาค ดังนั้นการวิเคราะห์ว่าเกิดอะไรขึ้นแน่นอนจึงเป็นความท้าทาย ผลการวิเคราะห์ในเบื้องต้นจึงให้เบาะแสความเป็นไปได้สองสามอย่าง

แผ่นดินไหวอินโดนีเซีย
แผนที่แสดงศูนย์กลางการเกิดแผ่นดินไหว และที่ตั้งของเมืองปาลู ซึ่งอยู่ในอ่าวแคบๆ นักวิชาการบางคนสันนิษฐานว่า ลักษณะทางธรณีสัณฐานเช่นนี้อาจส่งผลต่อการเกิดคลื่นยักษ์สึนามิที่รุนแรง

สึนามิที่เกิดขึ้นอาจเป็นผลของการเคลื่อนตัวในแนวดิ่งบางส่วนตามแนวรอยเลื่อน Gombert ตั้งข้อสังเกต แต่เขาคิดว่า นี่ไม่สามารถอธิบายการเกิดคลื่นสูงใหญ่ในครั้งนี้ได้ทั้งหมด แบบจำลองบางชิ้นประมาณการว่าคลื่นอาจสูงถึงเกือบห้าเมตร “แม้จะมีการเคลื่อนตัวในแนวดิ่งเล็กน้อย แต่สึนามิในครั้งนี้นับว่าใหญ่มาก” เขากล่าว สาเหตุอื่นอาจมาจากแผ่นดินถล่มซึ่งอาจเกิดขึ้นใต้ทะเลหรือบริเวณชายฝั่ง ที่ส่งผลกระทบต่อมวลน้ำในอ่าว จนทำให้เกิดคลื่นยักษ์

ความเป็นไปได้อีกประการหนึ่งคือ รอยเลื่อนอาจพาดผ่านพื้นที่ลาดชันใต้ทะเล ดังนั้นการเคลื่อนตัวในแนวระนาบจึงก่อให้เกิดการเลื่อนไหลของแผ่นดินจนนำไปสู่คลื่นมรณะ “คุณลองนึกภาพอ่าวปาลูว่าเป็นเหมือนอ่างอาบน้ำ” Andreas Schafer นักวิจัยจากสถาบันเทคโนโลยีในเยอรมนี กล่าว “ถ้าคุณทำให้น้ำในอ่างครึ่งหนึ่งเคลื่อนตัวออกไป ในลักษณะเดียวกับการเคลื่อนที่ในแนวระนาบของพื้นทะเลที่ผลักน้ำออกไป และเมื่อมันเคลื่อนตัวกลับมา สิ่งที่ตามมาด้วยก็คือคลื่นสึนามิ”

ลักษณะภูมิประเทศของอ่าวก็อาจมีส่วนด้วยเช่นกัน เป็นความเห็นจาก Janine Krippner นักภูเขาไฟวิทยาที่มหาวิทยาลัยคองคอร์ด  “นั่นส่งผลต่อความสูงของคลื่นเมื่อเคลื่อนตัวเข้าสู่บริเวณที่เล็กหรือแคบลง” เธอเขียนในทวิตเตอร์

ทว่านักวิทยาศาสตร์หลายคนชี้ว่า ยังมีความไม่แน่นอนอื่นๆอีกมากที่ส่งผลต่อเหตุการณ์ในครั้งนี้

เรื่อง Maya Wei-Haas

แผ่นดินไหวอินโดนีเซีย
ชาวบ้านเดินสำรวจความเสียหายจากสึนามิบนชายหาดแห่งหนึ่งในปาลู
(ภาพถ่าย: ISMOYO, AFP, Getty Images)
แผ่นดินไหวอินโดนีเซีย
ภาพถ่ายทางอากาศเผยความเสียหายของสะพานแห่งหนึ่งในเมืองปาลู
(ภาพถ่าย: Muhammad Adimaja, Antara Foto via REUTERS)

 

 

อ่านเพิ่มเติม

เปิดภาพความเสียหายจากไต้ฝุ่นมังคุด

เรื่องแนะนำ

ข้อควรรู้เกี่ยวกับ ฝุ่น PM 2.5 (ตอนที่ 1)

ภาพถ่ายโดย เอกรัตน์ ปัญญะธารา ข้อควรรู้เกี่ยวกับ ฝุ่น PM 2.5 (ตอนที่ 1) ทำความรู้จัก PM 2.5 PM ย่อมาจาก Particulate Matter หรืออนุภาคใดๆ ที่มีขนาดเล็กกว่า 2.5 ไมโครเมตร (ไมครอน) ซึ่งขนจมูกไม่ดักจับได้ โดยเป็นสารแขวนลอยที่ฟุ้งกระจายในชั้นบรรยากาศ อาจอยู่ในสภาพของเหลวหรือของแข็งขนาดเล็ก เช่น อนุภาคต่างๆ เชื้อโรค หรือฝุ่นละออง จนทำให้เรามองเห็นในภาพกว้างเป็นลักษณะคล้ายหมอกหรือควัน ในประเทศไทยเริ่มตรวจวัดค่า PM 2.5 มาตั้งแต่ พ.ศ. 2544 ก่อนที่กรมควบคุมมลพิษจะมอบหมายให้มหาวิทยาลัยธรรมศาสตร์ศึกษาเกี่ยวกับเรื่องฝุ่นละอองและข้อมูลอื่นๆ หลังจากนั้นคณะกรรมการสิ่งแวดล้อมแห่งชาติจึงออกประกาศการกำหนดมาตรฐานฝุ่น PM 2.5 ใน พ.ศ. 2553 ในสถานการณ์ปัจจุบันนิยมใช้การวัดค่าดัชนีคุณภาพอากาศ (Air Quality Index, AQI) ซึ่งเป็นตัวเลขที่ใช้ระบุคุณภาพอากาศของสถานที่นั้นๆ โดยตัวเลขบอกปริมาณ PM 2.5 เป็นหน่วย ไมโครกรัม/ลูกบาศก์เมตร (μg/m3) ค่าเฉลี่ย […]

ชมแผ่นน้ำแข็งทรงกลมค่อยๆ หมุนอยู่บนผิวน้ำ

โดย ซาร่าห์ กิบเบ็นส์ ภาพที่เกิดขึ้นนี้ดูราวกับเป็นความสมบูรณ์แบบทางธรรมชาติ เมื่อแผ่นน้ำแข็งรูปทรงกลมกำลังหมุนอย่างช้าๆ บนผิวของแม่น้ำ คลิปวิดีโอนี้ถูกบันทึกไว้ในปี 2016 จากแม่น้ำใน Omsk Oblast ภูมิภาคทางตอนกลางของรัสเซีย และทางตอนเหนือของคาซัคสถาน เมื่อมองในแวบแรก แผ่นน้ำแข็งดูเหมือนว่ากำลังหยุดนิ่ง แต่หากดูให้ดีจะพบว่ามันกำลังหมุนอย่างช้าๆ และที่น่าทึ่งก็คือแผ่นน้ำแข็งรูปวงกลมนี้ถูกสร้างขึ้นอย่างสมมาตร หรือเรียกได้ว่าเป็นวงกลมที่สมบูรณ์แบบ คำบอกเล่าจากผู้ถ่ายวิดีโอ (ที่ไม่ขอเปิดเผยชื่อ) แผ่นน้ำแข็งแผ่นนี้มีขนาดเส้นผ่านศูนย์กลางประมาณ 50 ฟุต ในรัสเซียแผ่นน้ำแข็งทรงกลมขนาดใหญ่เช่นนี้หาดูได้ยาก แต่ปรากฏการณ์ดังกล่าวไม่ใช่เรื่องผิดธรรมชาติแต่อย่างใดและแผ่นน้ำแข็งลักษณะนี้ก็มีรายงานการพบใน รัฐนอร์ทดาโกตา, วอชิงตัน และมิชิแกนเช่นกัน ทฤษฎีแรกที่เกิดจากการสังเกตแผ่นน้ำแข็งในปี 1987 และ 1994 ที่อยู่ระหว่างการไหลของแม่น้ำ อธิบายถึงสาเหตุของการเกิดลงใน Royal Meteorological Society ว่า การไหลของแม่น้ำทำให้เกิดกระแสน้ำวนขึ้น และส่งผลให้เกิดแผ่นน้ำแข็งเป็นรูปวงกลม แต่ผลการศึกษาเพิ่มเติม เมื่อเดือนมีนาคม ปีที่ผ่านมา ระบุว่าทฤษฎีนี้ไม่น่าจะเป็นไปได้เท่าไหร่ ผลการศึกษาที่ตีพิมพ์ลงในวารสาร Physical Review E นักวิจัยจากมหาวิทยาลัยลีแยฌ ในเบลเยียม พบว่า อุณหภูมิที่เปลี่ยนแปลงไปเป็นตัวทำให้เกิดน้ำวนขึ้น โดยเกิดจากเมื่อน้ำมีอุณหภูมิสูงขึ้นจะมีความหนาแน่นน้อยลงในขณะที่พื้นผิวยังคงเย็นอยู่ด้วยน้ำแข็ง จึงเกิดเป็นน้ำวนขึ้นมา ทีมนักวิจัยทดลองทฤษฎีนี้ในห้องปฏิบัติการ […]

ในเปรู ชาวบ้านที่เคยล่า กบหนังห้อย จนเสี่ยงสูญพันธุ์ ได้กลับมาเป็นผู้อนุรักษ์

กบหนังห้อย จากทะเลสาบตีตีกากาที่กำลังเสี่ยงต่อการสูญพันธุ์อย่างยิ่ง มักถูกลักลอบล่าเพื่อนำไปปรุงสมูทตี้กบเปรู ซึ่งเป็นเครื่องดื่มกระตุ้นพลังทางเพศประเทศดังกล่าว ภาพถ่ายโดย JOEL SARTORE, NATIONAL GEOGRAPHIC PHOTO ARK ผู้หญิงชาวเปรูขายงานหัตถกรรมที่มีแรงบันดาลใจจาก กบ หนังห้อย ซึ่งกำลังเสี่ยงสูญพันธุ์ มีเครื่องดื่มแบบดั้งเดิมชนิดหนึ่งในเปรู ซึ่งบางคนเรียกว่าสมูทตี้ กบ โดยเครื่องดื่มที่คนมักใช้เป็นยากระตุ้นทางเพศนี้ (แม้จะมีการกล่าวอ้างว่ามันรักษาโรคได้สารพัดอย่าง) ปรุงด้วยกบที่ถูกถลกหนัง กับส่วนผสมอื่นๆ เช่นน้ำผึ้งและรากของต้นมาคา (Maca) แน่นอนว่ากบซึ่งถูกนำมาใช้เป็นส่วนผสมของเครื่องดื่มชนิดนี้คือกบหนังห้อย หรือกบน้ำทะเลสาบตีตีกากา (Lake Titicaca Water Frog) แต่สัตว์สะเทินน้ำสะเทินบกที่เคยพบได้บ่อยประเภทนี้กลับมีจำนวนน้อยลงอย่างมาก Rosa Elena Zegarra Adrianzén นักชีววิทยาประจำสำนักงานอนุรักษ์ป่าและสัตว์ป่าแห่งชาติเปรู (Peru’s Forest and Wildlife National Service) กล่าวว่า พวกมันอาจมีจำนวนเพียง 50,000 ตัว (แม้เธอจะกล่าวเสริมว่า การคาดเดาจำนวนที่แน่นอนเป็นสิ่งที่ยาก เนื่องจากพวกมันอาศัยอยู่ในก้นลึกของทะเลสาบ) และองค์การระหว่างประเทศเพื่อการอนุรักษ์ทรัพยากรธรรมชาติ (International Union for Conservation of […]