เบื้องหลังสึนามิเหนือความคาดหมายจาก แผ่นดินไหวอินโดนีเซีย

เบื้องหลังสึนามิเหนือความคาดหมายจากแผ่นดินไหวอินโดนีเซีย

เบื้องหลังสึนามิเหนือความคาดหมายจาก แผ่นดินไหวอินโดนีเซีย

เย็นวันศุกร์ 28 กันยายน 2561 ที่ผ่านมา ตรงกับเวลา 17.02 น. ตามเวลาท้องถิ่น แผ่นดินไหวรุนแรงระดับ 7.5 แมกนิจูดสร้างแรงสั่นสะเทือนไปทั่วเกาะสุลาเวสีของอินโดนีเซีย วิดีโอคลิปเผยภาพน่าพรั่นพรึงของกำแพงน้ำที่เคลื่อนตัวเข้าสู่อ่าวแห่งหนึ่งใกล้เมืองปาลู ก่อนจะถาโถมซัดฝั่งอย่างต่อเนื่องรุนแรง ขณะที่ฝูงชนที่เฝ้าดูอยู่บนอาคารพากันแตกตื่น

นักวิทยาศาสตร์พากันประหลาดใจกับสึนามิที่เกิดขึ้นตามมา ส่งผลให้ประกาศเตือนภัยที่ออกมาขัดแย้งกัน กระนั้นผู้เชี่ยวชาญก็ชี้ว่า ลักษณะทางธรณีสัณฐานซึ่งมีลักษณะเฉพาะของพื้นที่อาจเป็นสาเหตุของหายนภัยที่เกิดขึ้นอย่างไม่คาดคิด

แผ่นดินไหวอินโดนีเซียครั้งใหญ่นี้เกิดขึ้นหลังแรงสั่นสะเทือนหลายระลอกตั้งแต่เวลาราว 14.00 น. เริ่มจากแผ่นดินไหวขนาด 6.1 แมกนิจูด  แผ่นดินไหวครั้งแรกนี้ไม่เพียงทำลายบ้านเรือนหลายสิบหลัง แต่ยังส่งผลให้มีผู้เสียชีวิตหนึ่งราย และบาดเจ็บอีกอย่างน้อย 10 ราย ตามรายงานของรอยเตอร์ แผ่นดินยังคงสั่นสะเทือนจากอาฟเตอร์ช็อกอีก 27 ครั้ง ก่อนจะส่งท้ายด้วยแรงสั่นสะเทือนรุนแรงที่เกิดขึ้นค่อนข้างตื้น นั่นคือแผ่นดินไหวขนาด 7.5 แมกนิจูดอยู่ลึกลงไปราว 10 กิโลเมตร ตามรายงานของสำนักงานธรณีวิทยาสหรัฐฯ นับจากนั้น ได้เกิดอาฟเตอร์ช็อกตามมาอีก 31 ครั้ง

ความเสียหายจากแผ่นดินไหวรุนแรงหลายระลอกยังไม่เป็นที่แน่ชัด แต่ดูเหมือนว่าการทำลายล้างจะกินบริเวณกว้าง หน่วยงานด้านภัยพิบัติทางธรรมชาติของอินโดนีเซีย (Badan Nasional Penanggulangan Bencana: BNPB) ระบุว่า แผ่นดินไหวทำให้ไฟฟ้าดับเป็นบริเวณกว้าง ส่งผลให้ระบบการสื่อสารขัดข้อง แต่เจ้าหน้าที่ในท้องถิ่นกำลังทำงานแข่งกับเวลาเพื่อกอบกู้สถานการณ์ รวมถึงกองทัพอินโดนีเซียได้จัดส่งกำลังพลลงพื้นที่เพื่อช่วยเหลือในภารกิจช่วยชีวิตและค้นหาผู้ประสบภัย

(สภาพอากาศรุนแรงสุดขั้ว ตัวการคร่าชีวิตในอนาคต?)

รายงานความเสียหายจนถึงค่ำวันอาทิตย์ตามเวลาในท้องถิ่น ยอดผู้เสียชีวิตพุ่งสูงถึง 832 คน และเจ้าหน้าที่เกรงว่า ตัวเลขอาจพุ่งสูงขึ้นอีก เนื่องจากทีมกู้ภัยและค้นหายังไม่สามารถเข้าถึงหลายพื้นที่ที่ประสบภัย ซึ่งรวมถึงเขต Donggala อันเป็นที่อยู่ของผู้คนถึง 300,000 คน เนื่องจากการติดต่อสื่อสารยังจำกัดและดินโคลนถล่มเป็นอุปสรรคสำคัญในการเข้าถึงพื้นที่

แผ่นดินไหวอินโดนีเซีย
ในภาพถ่ายเมื่อวันที่ 30 กันยายน ชาวเมืองพากันไปยังสนามบินเมืองปาลู โดยหวังจะโดยสารไปกับเที่ยวบินช่วยเหลือและอพยพผู้ประสบภัยหลังเกิดเหตุแผ่นดินไหวและสึนามิ
(ภาพถ่าย: YUSUF WAHIL, AFP, Getty Images)
แผ่นดินไหวอินโดนีเซีย
ผู้สูงอายุรอขึ้นเครื่องบินที่สนามบินเมืองปาลู ซึ่งกลับมาเปิดให้บริการอีกครั้งหลังเหตุแผ่นดินไหว
(ภาพถ่าย: Ulet Ifansasti, AFP, Getty Images)

 

คลื่นมรณะ

หน่วยงานพยากรณ์อากาศ ภูมิอากาศวิทยา และธรณีฟิสิกส์ (Agency for Meteorology, Climatology and Geophysics: BMKG) ออกประกาศเตือนเรื่องสึนามิในตอนแรก แต่หลังจากนั้นไม่นานก็ยกเลิกประกาศเตือนโดยอิงการวิเคราะห์ข้อมูลในขณะนั้น อย่างไรก็ตาม กำแพงคลื่นมหึมาก็เริ่มถาโถมขึ้นฝั่ง  ดังเห็นได้จากคลิปวิดีโอที่มีผู้บันทึกไว้ โดยเฉพาะคลิปที่ถ่ายจากอาคารจอดรถของห้างสรรพสินค้า Palu Grand Mall เผยให้เห็นมวลน้ำมหาศาลที่เคลื่อนตัวเข้าสู่ฝั่ง ก่อนที่ฝูงชนจะพากันแตกตื่นเพื่อเอาชีวิตรอด

ปกติแล้ว สึนามึมักเกิดจากการเคลื่อนตัวอย่างรุนแรงในแผ่นดินไหวใต้ทะเลโดยเฉพาะบริเวณชายขอบของแผ่นเปลือกโลก แผ่นดินไหวไม่ใช่เรื่องนอกเหนือความคาดหมายในอินโดนีเซีย เนื่องจากกลุ่มเกาะแห่งนี้ตั้งอยู่บนสิ่งที่เรียกว่า “วงแหวนอัคคี” หรือ Ring of Fire นั่นคือรอยต่อของแผ่นเปลือกโลกรูปทรงคล้ายเกือกม้าในมหาสมุทรแปซิฟิก บริเวณนี้เป็นที่เกิดของแผ่นดินไหวมากถึงราวร้อยละ 90 ของโลก

ทว่าคลื่นยักษ์กลับเป็นสิ่งที่อยู่เหนือความคาดหมายในเหตุแผ่นดินไหวลักษณะนี้

(พายุฝุ่นที่เกิดขึ้นในอินเดีย เหตุใดจึงส่งผลถึงตาย?)

แผ่นดินไหวอินโดนีเซีย
ผู้คนที่ได้รับผลกระทบจากแผ่นดินไหวและสึนามิรอการอพยพออกจากพื้นที่ประสบภัย
(ภาพถ่าย: Muhammad Adimaja, Antara Foto via REUTERS)
แผ่นดินไหวอินโดนีเซีย
ผู้รอดชีวิตจากเหตุแผ่นดินไหวขับรถจักรยานยนต์ผ่านซากเรือที่คลื่นสึนามิพัดมาเกยตื้นบนถนนในเมืองปาลู
(ภาพถ่าย: JEWEL SAMAD, AFP, Getty Images)

แผ่นดินไหวขนาด 7.5 แมกนิจูดในครั้งนี้ดูจะเป็นผลมาจากสิ่งที่เรียกว่า รอยเลื่อนตามแนวระดับ (strike-slip fault) ซึ่งเป็นรอยเลื่อนที่สองฟากของรอยเคลื่อนตัวเบียดอัดกันซึ่งส่วนใหญ่เกิดในแนวราบ ขณะนี่สึนามิส่วนใหญ่เกิดจากการเคลื่อนตัวในแนวดิ่งของรอยเลื่อนที่ส่งแรงไปยังมวลน้ำด้านบนจนนำไปสู่การเกิดกำแพงน้ำเคลื่อนตัวเข้าหาฝั่ง

“เป็นเรื่องเหนือความคาดหมายจริงๆ ครับ” Baptiste Gombert นักธรณีฟิสิกส์จากมหาวิทยาลัยออกซฟอร์ด ยอมรับและเสริมว่า ลักษณะธรณีสัณฐานของอินโดนีเซียซับซ้อนมาก เครือข่ายใยแมงมุมของรอยเลื่อนหลายชนิดพาดผ่านภูมิภาค ดังนั้นการวิเคราะห์ว่าเกิดอะไรขึ้นแน่นอนจึงเป็นความท้าทาย ผลการวิเคราะห์ในเบื้องต้นจึงให้เบาะแสความเป็นไปได้สองสามอย่าง

แผ่นดินไหวอินโดนีเซีย
แผนที่แสดงศูนย์กลางการเกิดแผ่นดินไหว และที่ตั้งของเมืองปาลู ซึ่งอยู่ในอ่าวแคบๆ นักวิชาการบางคนสันนิษฐานว่า ลักษณะทางธรณีสัณฐานเช่นนี้อาจส่งผลต่อการเกิดคลื่นยักษ์สึนามิที่รุนแรง

สึนามิที่เกิดขึ้นอาจเป็นผลของการเคลื่อนตัวในแนวดิ่งบางส่วนตามแนวรอยเลื่อน Gombert ตั้งข้อสังเกต แต่เขาคิดว่า นี่ไม่สามารถอธิบายการเกิดคลื่นสูงใหญ่ในครั้งนี้ได้ทั้งหมด แบบจำลองบางชิ้นประมาณการว่าคลื่นอาจสูงถึงเกือบห้าเมตร “แม้จะมีการเคลื่อนตัวในแนวดิ่งเล็กน้อย แต่สึนามิในครั้งนี้นับว่าใหญ่มาก” เขากล่าว สาเหตุอื่นอาจมาจากแผ่นดินถล่มซึ่งอาจเกิดขึ้นใต้ทะเลหรือบริเวณชายฝั่ง ที่ส่งผลกระทบต่อมวลน้ำในอ่าว จนทำให้เกิดคลื่นยักษ์

ความเป็นไปได้อีกประการหนึ่งคือ รอยเลื่อนอาจพาดผ่านพื้นที่ลาดชันใต้ทะเล ดังนั้นการเคลื่อนตัวในแนวระนาบจึงก่อให้เกิดการเลื่อนไหลของแผ่นดินจนนำไปสู่คลื่นมรณะ “คุณลองนึกภาพอ่าวปาลูว่าเป็นเหมือนอ่างอาบน้ำ” Andreas Schafer นักวิจัยจากสถาบันเทคโนโลยีในเยอรมนี กล่าว “ถ้าคุณทำให้น้ำในอ่างครึ่งหนึ่งเคลื่อนตัวออกไป ในลักษณะเดียวกับการเคลื่อนที่ในแนวระนาบของพื้นทะเลที่ผลักน้ำออกไป และเมื่อมันเคลื่อนตัวกลับมา สิ่งที่ตามมาด้วยก็คือคลื่นสึนามิ”

ลักษณะภูมิประเทศของอ่าวก็อาจมีส่วนด้วยเช่นกัน เป็นความเห็นจาก Janine Krippner นักภูเขาไฟวิทยาที่มหาวิทยาลัยคองคอร์ด  “นั่นส่งผลต่อความสูงของคลื่นเมื่อเคลื่อนตัวเข้าสู่บริเวณที่เล็กหรือแคบลง” เธอเขียนในทวิตเตอร์

ทว่านักวิทยาศาสตร์หลายคนชี้ว่า ยังมีความไม่แน่นอนอื่นๆอีกมากที่ส่งผลต่อเหตุการณ์ในครั้งนี้

เรื่อง Maya Wei-Haas

แผ่นดินไหวอินโดนีเซีย
ชาวบ้านเดินสำรวจความเสียหายจากสึนามิบนชายหาดแห่งหนึ่งในปาลู
(ภาพถ่าย: ISMOYO, AFP, Getty Images)
แผ่นดินไหวอินโดนีเซีย
ภาพถ่ายทางอากาศเผยความเสียหายของสะพานแห่งหนึ่งในเมืองปาลู
(ภาพถ่าย: Muhammad Adimaja, Antara Foto via REUTERS)

 

 

อ่านเพิ่มเติม

เปิดภาพความเสียหายจากไต้ฝุ่นมังคุด

เรื่องแนะนำ

เสือโคร่ง ข้างบ้าน : ตีแผ่ขบวนการค้าสัตว์ป่าในสหรัฐฯ

เสือโคร่งข้างบ้าน: ในสหรัฐฯ เสือโคร่ง และสัตว์กลุ่มแมวใหญ่อื่นๆ ที่อยู่ในสถานเพาะเลี้ยง  เช่น สวนสัตว์ข้างถนน คณะละครสัตว์ และกระทั่งบ้านเรือน มีจำนวนมากกว่าประชากรในธรรมชาติเสียอีก

บนน้ำแข็งที่เปราะบาง

เรื่อง แอนดี ไอแซกสัน ภาพถ่าย นิก คอบบิง น้ำแข็งทะเลเหนือมหาสมุทรอาร์กติกไม่ได้ราบเรียบไร้รอยต่ออย่างในแผนที่ แต่ประกอบขึ้นจากแพน้ำแข็งที่ไม่เคยอยู่นิ่ง ทั้งชนกัน เปลี่ยนรูปร่าง ตลอดจนแตกร้าวเพราะแรงลมและกระแสน้ำอยู่ตลอดเวลา เมื่อเดือนกุมภาพันธ์ปี 2016 ผมยืนตัวสั่นอยู่บนดาดฟ้าเรือ แลนซ์  เรือวิจัยรุ่นเก่าของนอร์เวย์ซึ่งกำลังแล่นฝ่าไปตามรอยแตกอันซับซ้อนของผืนน้ำแข็ง รอบข้างมีเพียงที่ราบสีขาวอันเวิ้งว้างทอดไกลสุดสายตา  ตัวเรือเหล็กกล้าสั่นสะเทือนและส่งเสียงเอี๊ยดอ๊าดเมื่อลุยผ่านก้อนน้ำแข็งที่ลอยอยู่  เรือ แลนซ์ กำลังมองหาแผ่นน้ำแข็งขนาดใหญ่ให้ยึดเกาะแทนน้ำแข็งแผ่นเก่าที่แตกไป เพื่อจะได้ลอยไปบนทะเลเยือกแข็งอีกครั้ง พร้อมกับบันทึกชะตากรรมของน้ำแข็งทะเลในอาร์กติกไปด้วย ทว่ามหาสมุทรอาร์กติกในปัจจุบันไม่เหมือนเดิมอีกต่อไป อากาศเหนืออาร์กติกอุ่นขึ้นโดยเฉลี่ยราวสามองศาเซลเซียสในช่วงศตวรรษที่ผ่านมา ผืนน้ำแข็งที่เคยปกคลุมหายไปมาก และที่มีอยู่ก็บางลงกว่าเดิม หนำซ้ำยังเป็นน้ำแข็งตามฤดูกาลมากกว่าจะเป็นแพน้ำแข็งเก่าแก่ที่สะสมตัวเป็นชั้นหนา วัฏจักรแห่งความหายนะที่ส่งผลสะท้อนกว้างไกลได้เกิดขึ้นแล้ว กล่าวคือเมื่อน้ำแข็งสีขาวถูกแทนที่ด้วยผืนน้ำสีเข้มของมหาสมุทรในฤดูร้อน ย่อมเกิดการดูดซับแสงอาทิตย์ไว้มากขึ้น ส่งผลให้น้ำและอากาศยิ่งร้อนขึ้น และนั่นย่อมทำให้การละลายที่ดำเนินอยู่รุนแรงยิ่งขึ้นตามไปด้วย “มหาสมุทรอาร์กติกอุ่นขึ้นก่อนใคร แถมยังอุ่นขึ้นมากที่สุดและเร็วที่สุดด้วย” คิม โฮลเมน อธิบาย เขาเป็นผู้อำนวยการนานาชาติของสถาบันขั้วโลกนอร์เวย์ หรือเอ็นพีไอ (Norwegian Polar Institute: NPI) ซึ่งเป็นเจ้าของเรือ แลนซ์ แบบจำลองสภาพภูมิอากาศทำนายว่า เมื่อถึงปี 2040 เราจะสามารถเดินเรือข้ามน่านน้ำเปิดไปยังขั้วโลกเหนือได้ในฤดูร้อน ที่ผ่านมา  น้ำแข็งทะเลในมหาสมุทรอาร์กติกทำให้ทั้งโลกเย็นลงด้วยการสะท้อนแสงแดดกลับสู่อวกาศ การสูญเสียน้ำแข็งในภูมิภาคนี้จึงส่งผลกระทบต่อสภาพภูมิอากาศและลมฟ้าอากาศนอกแถบอาร์กติกอย่างไม่อาจหลีกเลี่ยง แต่จะส่งผลอย่างไรบ้างนั้นยังไม่มีคำตอบแน่ชัด การพยากรณ์ที่แม่นยำกว่านี้ต้องอาศัยข้อมูลที่ดีกว่าเกี่ยวกับน้ำแข็งทะเลและการเปลี่ยนแปลงของมัน […]

เรือนยอดของต้นไม้ ช่วยป้องกันโรคระบาดในพืช

เรือนยอดของต้นไม้ ในป่าล้วนรักษาระยะห่างจนเกิดเป็นช่องว่าง เรียกว่า เรือนยอดไม่บดบังกัน (crown  shyness) ซึ่งช่วยให้ต้นไม้สามารถแบ่งปันทรัพยากร และควบคุมการระบาดของโรค เดือนมีนาคม ค.ศ. 1982 ในวันที่อากาศอบอุ่น ฟรานซิส “แจ็ก” พุตซ์ (Francis “Jack” Putz) นักชีววิทยา เดินทางเข้าไปในป่าต้นโกงกางที่มี เรือนยอดของต้นไม้ เพื่อหลบหลีกจากความร้อนในช่วงบ่าย ด้วยความง่วงจากอาหารมื้อเที่ยง และการทำงานภาคสนามในอุทยานแห่งชาติ กัวนากัสเต ประเทศคอสตาริกา อย่างหนัก พุตซ์จึงตัดสินใจงีบหลับระหว่างวัน ขณะที่เขามองขึ้นไปบนท้องฟ้า สายลมพัดยอดโกงกางที่อยู่เหนือเขาไหวเอนไปมา ทำให้กิ่งก้านสาขาของต้นไม้ที่อยู่ใกล้เคียงก่ายเข้าหากัน ใบไม้และกิ่งไม้ที่อยู่ขอบนอกสุดของเรือนยอดหักลง พุตซ์สังเกตเห็นว่าการตัดแต่งกิ่งซึ่งกันและกันนี้ทิ้งร่องรอยของพื้นที่ว่างบนเรือนยอด เครือข่ายของยอดไม้ที่เรียกว่า Crown Shyness ได้รับการบันทึกไว้ในป่าทั่วโลก จากป่าโกงกางของคอสตาริกาไปจนถึงต้นการบูรบอร์เนียวที่สูงตระหง่านของมาเลเซีย มีช่องว่างระหว่างพุ่มไม้เขียวขจี แต่นักวิทยาศาสตร์ยังไม่เข้าใจอย่างถ่องแท้ว่า เหตุใดยอดไม้จึงไม่ยอมให้เกิดการบดบังกัน พุตซ์ให้เหตุผลว่า ต้นไม้ต้องการพื้นที่ว่างซึ่งกันและกัน เพื่อใช้ในแผ่กิ่งก้าน และดูเหมือนว่าลมจะมีบทบาทสำคัญในการช่วยให้ต้นไม้จำนวนมากรักษาระยะห่างระหว่างกันได้ การแบ่งแยกพื้นที่ว่างระหว่างกิ่งก้านของแต่ละต้น อาจช่วยเพิ่มการเข้าถึงทรัพยากรของพืช เช่น แสง อีกทั้งช่วยขัดขวางการแพร่กระจายของแมลงที่กัดกินใบ เถาวัลย์ กาฝาก หรือโรคติดเชื้ออื่น ๆ เม็ก […]

เอเลี่ยนสปีชีส์เดินทางข้ามมหาสมุทรด้วยขยะพลาสติก

บรรดาสัตว์ต่างถิ่นพากันเดินทางจากญี่ปุ่นมายังสหรัฐอเมริกา ด้วยการโดยสารมากับขยะพลาสติก ที่น่าทึ่งก็คือพวกมันมีชีวิตรอดได้อย่างไรเป็นปี?