คลื่นเสียง เกิดจากอะไร และทำไมเราได้ยินเสียง ทำไมสัตว์บางชนิดได้ยินเสียงที่เราไม่ได้ยิน

คลื่นเสียง (Sound wave) และการได้ยินเสียง

คลื่นเสียง (Sound wave) คือ คลื่นกล (Mechanical wave) ตามยาวที่เกิดจากการสั่นสะเทือนของวัตถุ หรือ “แหล่งกำเนิดเสียง” ซึ่งต้องอาศัยตัวกลาง (Medium) ในการเคลื่อนที่

คลื่นเสียง สามารถเคลื่อนที่ผ่านตัวกลางได้ทุกสถานะ ไม่ว่าจะเป็นวัตถุของแข็ง ของเหลว หรือก๊าซ คลื่นเสียงนั้น มีคุณสมบัติเช่นเดียวกับคลื่นอื่นๆ เช่น แอมพลิจูด (Amplitude) ความเร็ว (Velocity) หรือ ความถี่ (Frequency)

เสียง (Sound) คือ การถ่ายทอดพลังงานจากการสั่นสะเทือนของแหล่งกำเนิดเสียงผ่านโมเลกุลของตัวกลางไปยังผู้รับ โดยที่หูของเรานั้น สามารถรับรู้ถึงการสั่นสะเทือนของโมเลกุลเหล่านี้ได้ และได้ทำการแปลผลลัพธ์ออกมาในรูปของเสียงต่างๆ

การเคลื่อนที่ของคลื่นเสียง

เมื่อวัตถุเกิดการเคลื่อนที่หรือถูกกระทำด้วยแรงจากภายนอก ก่อให้เกิดการสั่นสะเทือนของโมเลกุลภายในวัตถุนั้น ซึ่งส่งผลไปยังอนุภาคของอากาศหรือตัวกลางที่อยู่บริเวณโดยรอบ  ก่อให้เกิดการรบกวนหรือการถ่ายโอนพลังงาน ผ่านการสั่นและการกระทบกันเป็นวงกว้างทำให้อนุภาคของอากาศเกิด “การบีบอัด” (Compression) เมื่อเคลื่อนที่กระทบกัน และ “การยืดขยาย” (Rarefaction) เมื่อเคลื่อนที่กลับตำแหน่งเดิม ดังนั้น คลื่นเสียง จึงเรียกว่า “คลื่นความดัน” (Pressure wave) เพราะอาศัยการผลักดันกันของโมเลกุลในตัวกลางในการเคลื่อนที่

ตัวกลาง (Medium) จึงกลายเป็นปัจจัยสำคัญต่อการได้ยินเสียง เพราะคลื่นเสียงเคลื่อนที่โดยอาศัยตัวกลางในการถ่ายทอดพลังงานเท่านั้น ส่งผลให้ในภาวะสุญญากาศ ซึ่งเป็นพื้นที่ว่างที่ไม่มีอนุภาคตัวกลางใดๆ คลื่นเสียงจึงไม่สามารถเคลื่อนที่ผ่านไปได้

คลื่นเสียง, เดซิเบล,
ภาพเปรียบเทียบของคลื่นเสียงระดับต่าง

นอกจากนี้ สถานะและอุณหภูมิของตัวกลางยังเป็นตัวแปรสำคัญในการกำหนดความเร็วในการเคลื่อนที่ของคลื่นเสียงอีกด้วย ซึ่งโดยทั่วไปแล้ว เสียงเคลื่อนที่ผ่านวัตถุของแข็งได้ดีกว่าของเหลวและก๊าซ

ตารางการเคลื่อนที่ของคลื่นเสียงผ่านตัวกลางทั้ง 3 สถานะ

ตัวกลาง

อุณหภูมิ (องศาเซลเซียส)

ความเร็ว (เมตรต่อวินาที)

ก๊าซ (Gases)

อากาศ

0

331

อากาศ

20

343

ฮีเลียม

0

965

ไฮโดรเจน

20

1,286

ของเหลว (Liquids)

ปรอท

25

1,450

น้ำ

25

1,493

น้ำทะเล

25

1,533

ของแข็ง (Solids)

ยาง

60

ทองคำ

3,240

แก้ว

5,640

เหล็ก

5,960

เพชร

12,000

อ้างอิง schoolnet.org.za, Soundproofpanda.com

สมบัติของเสียง

การสะท้อน (Reflection) คือ การเคลื่อนที่ของเสียงไปกระทบสิ่งกีดขวาง ส่งผลให้เกิดการสะท้อนกลับของเสียงที่เรียกว่า “เสียงสะท้อน” (Echo) ซึ่งโดยปกติแล้ว เสียงที่ผ่านไปยังสมองจะติดประสาทหูราว 0.1 วินาที ดังนั้นเสียงที่สะท้อนกลับมาช้ากว่า 0.1 วินาที ทำให้หูของเราสามารถแยกเสียงจริงและเสียงสะท้อนออกจากกันได้ นอกจากนี้ หากมุมที่รับเสียงสะท้อนเท่ากับมุมตกกระทบของเสียงจะส่งผลให้เสียงสะท้อนมีระดับความดังสูงที่สุดอีกด้วย

การหักเห (Refraction) คือ การเคลื่อนที่ของเสียงผ่านตัวกลางต่างชนิดกัน หรือการเคลื่อนที่ผ่านตัวกลางที่มีอุณหภูมิต่างกัน ส่งผลให้อัตราเร็วและทิศทางการเคลื่อนที่ของเสียงเปลี่ยนไป

การเลี้ยวเบน (Diffraction) คือ การเดินทางอ้อมสิ่งกีดขวางหรือเลี้ยวเบนผ่านช่องว่างต่างๆของเสียง โดยคลื่นเสียงที่มีความถี่และความยาวคลื่นมาก สามารถเดินทางอ้อมสิ่งกีดขวางได้ดีกว่าคลื่นสั้นที่มีความถี่ต่ำ

การแทรกสอด (Interference) เกิดจากการปะทะกันของคลื่นเสียงจากหลายแหล่งกำเนิด ซึ่งอาจทำให้เกิดเสียงที่ดังขึ้นหรือเบาลงกว่าเดิม หากคลื่นเสียงที่มีความถี่ต่างกันเล็กน้อย (ไม่เกิน 7 เฮิรตซ์) เมื่อเกิดการแทรกสอดกันจะทำให้เกิดเสียงบีตส์ (Beats)

อ่านต่อหน้า 2 เรื่องการได้ยินเสียง

เรื่องแนะนำ

เผยโฉมฟอสซิลไดโนเสาร์สภาพสมบูรณ์ที่สุดเท่าที่เคยค้นพบ

เผยโฉม ฟอสซิลไดโนเสาร์ สภาพสมบูรณ์ที่สุดเท่าที่เคยค้นพบ คนงานเหมืองในรัฐแอลเบอร์ตา ประเทศแคนาดาพบ ฟอสซิลไดโนเสาร์ ซึ่งมีสภาพดีที่สุดตัวหนึ่งเท่าที่เคยพบมา มันคือโนโดซอร์ (Nodosaur) ไดโนเสาร์หุ้มเกราะชนิดหนึ่งที่กินพืชเป็นอาหาร มีชีวิตอยู่เมื่อราว 110 ล้านปีก่อน เจ้าสัตว์ตัวนี้มีเดือยแหลมยาว 50 เซนติเมตรคู่หนึ่งโผล่ขึ้นมาจากบ่า ตอนมีชีวิต มันมีความยาว 5.5 เมตร และหนักเกือบ 1.3 ตัน ติดตามอ่านเรื่องราวการค้นพบสัตว์ยักษ์ตัวนี้ได้ในนิตยสาร เนชั่นแนล จีโอกราฟฟิก ฉบับภาษาไทย เดือนมิถุนายน 2560

นักพยากรณ์อากาศทราบได้อย่างไรว่าพายุจะเดินทางไปไหน?

น่าทึ่งที่นักพยากรณ์อากาศสามารถทราบล่วงหน้าว่าพายุจะมาถึงที่ใด ในเวลาใด การมาถึงของ “พายุปาบึก” คือโอกาสบนวิกฤตที่เราจะได้ทำความเข้าใจเกี่ยวกับการเดินทางของวาตภัยกันให้ลึกซึ้งกว่าเดิม

ยานอินไซต์ตรวจจับแผ่นดินไหวบนดาวอังคารได้เป็นครั้งแรก

นี่คือภาพวาดของยานอินไซต์บนดาวอังคาร องค์กรอวกาศประกาศว่ายานอาจตรวจจับการแรงสั่นสะเทือนบนดาวเคราะห์สีแดง หรือ แผ่นดินไหวบนดาวอังคาร ซึ่งบันทึกได้เป็นครั้งแรก ภาพวาดโดย NASA/JPL-CALTECH นี่คือการสั่นสะเทือนของแผ่นดินครั้งแรกบนดาวเคราะห์สีแดงอย่างที่สามารถบันทึกได้ และแน่นอนว่า นี่คงไม่ใช่ครั้งสุดท้าย ยานอินไซต์ (Insight Lander) ได้ตรวจจับบันทึกเหตุการณ์แผ่นดินไหวบนดาวอังคารได้เป็นครั้งแรก ซึ่งก่อให้เกิด “แรงสั่นสะเทือน” ต่อบรรดานักวิทยาแผ่นดินไหวที่อยู่ห่างไปราว 16 ล้านกิโลเมตร และเป็นการเริ่มต้นยุคใหม่ของการศึกษาดาวเคราะห์สีแดงดวงนี้ สัญญาณอันแผ่วเบาที่ถูกตรวจจับได้เมื่อวันที่ 6 เมษายน ที่ผ่านมา คือการสั่นสะเทือนซึ่งเหล่านักวิทยาศาสตร์เชื่อว่าเกิดจากบริเวณภายในของดาวอังคาร (Martian interior) มากกว่าแรงบนพื้นผิว (Surface forces) อย่างเช่นกระแสลม อย่างไรก็ตาม นักวิจัยยังคงศึกษาข้อมูลเพื่อหาแหล่งกำเนิดของแผ่นดินไหวที่แม่นยำกว่านี้ (รับฟังคลื่นเสียงที่คาดว่าเป็นแผ่นดินไหวบนดาวอังคารที่ยานอินไซต์ตรวจจับได้ที่นี่) คลื่นที่ถูกตรวจจับได้นั้นมีขนาดเล็ก อาจเปรียบได้กับแผ่นดินไหวบนโลกที่ระดับ 2 หรือ 2.5 แมกนิจูด ซึ่งแทบไม่สามารถรู้สึกได้เลยบนพื้นผิวโลก แต่การสั่นสะเทือนนี้ได้สร้างช่วงเวลาที่สำคัญกับบรรดานักวิทยาศาสตร์ที่ทำงานร่วมกับยานอินไซต์ที่รอคอยวันนี้มานับตั้งแต่การติดตั้งเครื่องมือที่ใช้ตรวจวัดคลื่นแผ่นดินไหว (Seimometer) ไปกับตัวยานเมื่อเดือนธันวาคม ปี 2018 และได้เริ่มช่วงต้นเวลาของการสังเกตเมื่อหลายสัปดาห์ที่ผ่านมา “ผมไล่ตามแผ่นดินไหวบน ดาวอังคาร ครั้งนี้มาเกือบ 30 ปี นี่เป็นช่วงจุดสูงสุดของชีวิตในการทำงานที่ผมตามหามานาน” – บรูซ […]