ธาตุกัมมันตรังสี (Radioactive Element)

ธาตุบางชนิดโดยเฉพาะอย่างยิ่งธาตุที่มีมวลอะตอมสูง มีความสามารถในการแผ่รังสีออกมาได้เองอย่างต่อเนื่อง โดยปรากฏการณ์การแผ่รังสีที่เกิดขึ้นนี้เรียกว่า กัมมันตภาพรังสี ขณะที่ธาตุดังกล่าวเรียกว่า ธาตุกัมมันตรังสี

ธาตุกัมมันตรังสี (Radioactive Element) คือธาตุที่มีองค์ประกอบภายในนิวเคลียส (Nucleus) ไม่เสถียร ส่งผลให้เกิดการสลายตัว หรือการปล่อยรังสีของธาตุอยู่ตลอดเวลา เนื่องจากปรากฏการณ์การแผ่รังสีของธาตุเป็นกระบวนการปรับสมดุล เพื่อสร้างความเสถียรภายในธาตุ ซึ่งในธรรมชาติ

ธาตุกัมมันตรังสีมักเป็นธาตุที่มีมวลมากหรือมีเลขอะตอมสูงเกินกว่า 82 เช่น เรเดียม (Radium) ที่มีเลขมวลอยู่ที่ 226 และเลขอะตอม 88 หรือยูเรเนียม (Uranium) มีเลขมวลอยู่ที่ 238 และเลขอะตอม 92

การค้นพบธาตุกัมมันตรังสี

ธาตุกัมมันตรังสีค้นพบครั้งแรกในปี 1896 โดยนักเคมีชาวฝรั่งเศส อองตวน อองรี แบ็กเกอเรล (Antoine Henri Becquerel) จากความบังเอิญที่เขานำฟิล์มถ่ายรูปวางไว้ใกล้เกลือโพแทสเซียมยูเรนิลซัลเฟต ซึ่งสร้างรอยดำบนแผ่นฟิล์มเสมือนการถูกแสงผ่านเข้าไป เขาจึงเชื่อว่ามีรังสีพลังงานสูงบางชนิดปลดปล่อยออกมาจากเกลือยูเรเนียมก้อนนั้น

นอกจากนี้ เขาทำการทดลองกับสารประกอบของยูเรเนียมชนิดอื่น ต่างให้ผลลัพธ์ไปในทิศทางเดียวกัน โดยหลังจากการค้นพบดังกล่าวเพียง 2 ปี มารี คูรี (Marie Curie) และปีแอร์ คูรี (Pierre Curie) นักเคมีเชื้อสายโปแลนด์ ทำการทดลองกับธาตุหลายชนิดและพบว่าธาตุทอเรียม (Thorium) เรเดียม (Radium) และพอโลเนียม (Polonium) ต่างสามารถแผ่รังสีได้เช่นเดียวกัน จึงส่งผลให้เกิดข้อสรุปร่วมกันที่ว่า ธาตุบางชนิดโดยเฉพาะอย่างยิ่งธาตุที่มีมวลอะตอมสูง มีความสามารถในการแผ่รังสีออกมาได้เองอย่างต่อเนื่อง โดยปรากฏการณ์การแผ่รังสีที่เกิดขึ้นนี้เรียกว่า “กัมมันตภาพรังสี” ขณะที่ธาตุดังกล่าวเรียกว่า “ธาตุกัมมันตรังสี”

การค้นพบ, ธาตุกัมมันตรังสี, กัมมันตรังสี
อองตวน อองรี แบ็กเกอเรล

การแผ่รังสีของธาตุ

ภายในนิวเคลียสของธาตุประกอบไปด้วยโปรตอน (Proton) ที่มีประจุบวก และนิวตรอน (Neutron) ที่มีสถานะเป็นกลางทางไฟฟ้า ซึ่งการมีสัดส่วนหรือจำนวนโปรตอนต่อจำนวนนิวตรอนภายในอะตอมไม่เหมาะสม ทำให้ธาตุดังกล่าวขาดเสถียรภาพและเกิดการปล่อยรังสีออกมา การแผ่รังสีของธาตุนั้นเป็นกระบวนการปรับสมดุลภายในตัวเองของธาตุตามธรรมชาติ ซึ่งสามารถก่อกำเนิดธาตุชนิดใหม่หรืออาจสร้างการเปลี่ยนแปลงภายในองค์ประกอบอะตอมของธาตุชนิดเดิม เช่น จำนวนโปรตอนหรือนิวตรอนในนิวเคลียสเพิ่มขึ้นหรือลดลง โดยธาตุกัมมันตรังสีแต่ละชนิดจะมีระยะเวลาในการสลายตัวและการแผ่รังสีที่แตกต่างกันออกไป หรือที่เรียกว่า “ครึ่งชีวิต” (Half Life)

รังสีจำแนกเป็น 3 ชนิด ได้แก่

  • รังสีแอลฟา (Alpha: α)

เกิดจากการสลายตัวของนิวเคลียสที่มีขนาดใหญ่และมีมวลมาก หรือมีจำนวนโปรตอนภายในนิวเคลียสมาก เพื่อปรับตัวให้มีเสถียรภาพมากขึ้น รังสีแอลฟา หรืออนุภาคแอลฟาในรูปของนิวเคลียสของฮีเลียม (Helium) จึงถูกปล่อยออกมา โดยมีสถานะทางไฟฟ้าเป็นประจุบวก มีมวลค่อนข้างใหญ่ ส่งผลให้รังสีแอลฟาเกิดการเบี่ยงเบนจากการเคลื่อนที่ได้ยาก มีอำนาจทะลุทะลวงต่ำ ไม่สามารถทะลุผ่านสิ่งกีดขวาง เช่น ผิวหนัง แผ่นโลหะบางๆ หรือแผ่นกระดาษไปได้ ดังนั้น เมื่อเกิดการชนเข้ากับสิ่งกีดขวาง รังสีแอลฟาจะถ่ายทอดพลังงานเกือบทั้งหมดออกไป ส่งผลให้เกิดการแตกตัวเป็นไอออนของสารที่รังสีผ่านได้ดี

  • รังสีบีตา (Beta: β)

เกิดจากการสลายตัวของนิวเคลียสที่มีจำนวนนิวตรอนมาก รังสีบีตามีคุณสมบัติคล้ายคลึงกับอิเล็กตรอน (Electron) ซึ่งมีประจุไฟฟ้าเป็นลบและมีมวลต่ำ แต่มีอำนาจทะลุทะลวงสูง (สูงกว่ารังสีแอลฟาราว 100 เท่า) และมีความเร็วในการเคลื่อนที่สูงถึงระดับใกล้เคียงกับความเร็วแสง

  • รังสีแกมมา (Gamma: γ)

เกิดจากการที่นิวเคลียสภายในอะตอมมีพลังงานสูงหรือถูกกระตุ้น จึงก่อให้เกิดรังสีแกมมาที่มีสถานะเป็นกลางทางไฟฟ้า มีสมบัติคล้ายรังสีเอกซ์ (X-ray) คือเป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นสั้นหรือมีความถี่สูง ไม่มีประจุและไม่มีมวล เป็นรังสีที่มีพลังงานสูง เคลื่อนที่ด้วยความเร็วเท่าแสง และมีอำนาจทะลุทะลวงสูงที่สุด

การประยุกต์ใช้ธาตุกัมมันตรังสี

  • ด้านธรณีวิทยา: มีการใช้คาร์บอน-14 (C-14) ในการคำนวณหาอายุของโบราณวัตถุหรืออายุของฟอสซิล
  • ด้านการแพทย์: มีการใช้ไอโอดีน-131 (I-131) ในการติดตามเพื่อศึกษาและรักษาโรคต่อมไทรอยด์เป็นพิษ รวมถึงการใช้โคบอลต์-60 (Co-60) และเรเดียม-226 (Ra-226) ในการรักษาโรคมะเร็ง
  • ด้านเกษตรกรรม: มีการใช้ฟอสฟอรัส-32 (P-32) ในการศึกษาเส้นทางการเคลื่อนที่และความต้องการธาตุอาหารของพืช และใช้โพแทสเซียม-32 (K-32) ในการหาอัตราการดูดซึมของต้นไม้
  • ด้านอุตสาหกรรม: มีการใช้ธาตุกัมมันตรังสีในการตรวจหารอยตำหนิ เช่น รอยร้าวของโลหะหรือท่อขนส่งของเหลว รวมไปถึงการใช้ธาตุกัมมันตรังสีในการตรวจสอบ ควบคุมความหนาของวัตถุ และใช้รังสีฉายบนอัญมณีเพื่อสร้างสีสันให้สวยงาม
  • ด้านการถนอมอาหาร: มีการใช้รังสีแกมมาของโคบอลต์-60 (Co-60) เพื่อทำลายแบคทีเรียในอาหาร ช่วยให้เก็บรักษาอาหารไว้ได้นานยิ่งขึ้น
  • ด้านพลังงาน: มีการใช้พลังงานความร้อนที่ได้จากปฏิกิริยานิวเคลียร์ของยูเรเนียม-238 (U-238) ในเตาปฏิกรณ์ปรมาณู สร้างไอน้ำเพื่อใช้ในการผลิตกระแสไฟฟ้า

อันตรายจากธาตุกัมมันตรังสี

รังสีสามารถส่งผลให้ตัวกลางที่เคลื่อนผ่านแตกตัวเป็นไอออนได้ รังสีชนิดต่างๆ จึงถือเป็นอันตรายต่อมนุษย์ รวมถึงสิ่งมีชีวิตอื่นๆ การได้รับหรือสัมผัสกับรังสีที่เป็นอันตรายสามารถส่งผลให้ร่างกายเกิดการเจ็บป่วย จากการที่เซลล์ซึ่งประกอบขึ้นเป็นอวัยวะดังกล่าวเกิดการแตกตัว รวมไปถึงเพิ่มความเสี่ยงของการเกิดโรคร้าย เช่น โรคมะเร็ง นอกจากนี้ หากร่างกายได้รับรังสีที่มีอานุภาพสูงเป็นเวลานาน อาจส่งผลกระทบลึกลงไปถึงระดับสารพันธุกรรมภายในเซลล์ ทำให้การสร้างเซลล์ใหม่ในร่างกายเกิดการกลายพันธุ์ โดยเฉพาะเซลล์ที่ทำหน้าที่ในการสืบพันธุ์ ซึ่งเป็นอันตรายอย่างยิ่งต่อการถ่ายทอดลักษณะทางพันธุกรรมไปยังทายาทรุ่นต่อไป

สืบค้นและเรียบเรียง
คัดคณัฐ ชื่นวงศ์อรุณ


ข้อมูลอ้างอิง

Duckster.com – https://www.ducksters.com/science/chemistry/radiation_and_radioactivity.php

กรมประมง  – https://www.fisheries.go.th

ฟิสิกส์ราชมงคล – http://www.rmutphysics.com/charud/scibook/sciencebook4/motion-energy/4-radoactivity.pdf

สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สสวท.) – https://www.scimath.org/lesson-physics/item/7445-2017-08-11-07-20-11


เรื่องอื่นๆ ที่น่าสนใจ : พลังงานหมุนเวียน (Renewable Energy)

เรื่องแนะนำ

เทคโนโลยีภูมิสารสนเทศกับการแก้ปัญหาจากต้นน้ำถึงปลายน้ำ

ภาพประกอบ : PIRO4D from Pixabay ปัจจุบัน การบริหารจัดการและการแก้ไขปัญหาเรื่องทรัพยากรธรรมชาติในประเทศไทย ได้รับความสนใจจากหน่วยงานทุกภาคส่วนมากขึ้น เนื่องจากประชาชนในสังคมส่วนใหญ่เริ่มตระหนักถึงผลกระทบจากปัญหาสิ่งแวดล้อมที่เกิดขึ้นกับตัวเอง ทั้งเรื่องการจัดการปัญหาขยะ การแก้ไขปัญหาเรื่องการบุกรุกพื้นที่ป่า การเปลี่ยนแปลงสภาพภูมิอากาศ และการฟื้นฟูทรัพยากรทางทะเลและชายฝั่ง เป็นต้น ในทุกการแก้ปัญหา ทุกหน่วยงานมักเริ่มต้นจากการสืบค้นข้อมูล เพื่อนำข้อมูลทั้งหมดมาใช้ประกอบการตัดสินใจและวางแผนการแก้ปัญหาอย่างเป็นรูปธรรม หนึ่งในข้อมูลที่ถูกสืบค้นมากที่สุดคือ ข้อมูลภูมิสารสนเทศ ซึ่งช่วยให้ผู้ใช้ข้อมูลเห็นถึงภาพรวมของสภาพพื้นที่ และสามารถนำไปวางแผนปฏิบัติงานได้จริง จิสด้าเป็นหนึ่งหน่วยงานที่มีบทบาทสนับสนุนเรื่องเทคโนโลยีภูมิสารสนเทศและภาพถ่ายดาวเทียม เพื่อการแก้ปัญหาอย่างบูรณาการร่วมกับหน่วยงานที่เกี่ยวข้อง โดยในช่วงที่ผ่านมา จิสด้าสนับสนุนข้อมูลภูมิสารสนเทศในโครงการต่างๆ ดังนี้ 1. เทคโนโลยีและนวัตกรรมภูมิสารสนเทศ เพื่อการบริหารจัดการสิ่งแวดล้อมและทรัพยากรทางทะเลและชายฝั่ง จังหวัดเพชรบุรี เป็นการขับเคลื่อนเทคโนโลยีและนวัตกรรมภูมิสารสนเทศ เพื่อบริหารจัดการทรัพยากรธรรมชาติในลุ่มน้ำเพชรบุรี โดยการสำรวจสถานการณ์ปัญหาและความพร้อมของพื้นที่ ภายใต้การเปลี่ยนแปลงสภาพภูมิอากาศ รวมถึงวางแนวทางกำหนดอนาคตของอ่าวบางตะบูนกับประชาชนในพื้นที่ และหน่วยงานที่เกี่ยวข้อง ด้วยความเชี่ยวชาญเรื่องข้อมูล จิสด้าจึงได้จัดทำฐานข้อมูลเชิงพื้นที่ของชุมชน แผนที่ชุมชนแบบมาตรฐานซึ่งเป็นที่ยอมรับของทุกภาส่วน และนำผลที่ได้ไปปฏิบัติใช้งานจริง ก่อให้เกิดการประสานความร่วมมือเพื่อหามาตรการที่เหมาะสมสำหรับการแก้ปัญหาในพื้นที่ต่อไป 2. การใช้เทคโนโลยีภูมิสารสนเทศเพื่อการติดตามสถานการณ์การระบาดของโรคใบร่วงในพื้นที่ปลูกยางพาราเขตภาคใต้ตอนล่าง จิสด้าดำเนินงานร่วมกับการยางแห่งประเทศไทย ใช้เทคโนโลยีเชิงพื้นที่และภาพถ่ายดาวเทียม ติดตามสถานการณ์การระบาดของโรคใบร่วงในสวนยางพาราเขตภาคใต้ตอนล่าง ได้แก่ พังงา กระบี่ ตรัง สงขลา ปัตตานี ยะลา และนราธิวาส ตั้งแต่เดือนพฤศจิกายน […]

วาฬเพชฌฆาตปะทะวาฬสีน้ำเงิน

ฝูงวาฬออร์การ่วมมือกันโจมตีสัตว์ที่มีขนาดใหญ่ที่สุดในโลก พวกมันคงไม่ได้กำลังล่าเหยื่อ เรื่อง ซาราห์ กิบเบ็นส์ เมื่อวันที่ 18 พฤษภาคม ที่เมืองมอนเตเรย์ รัฐแคลิฟอร์เนีย อากาศยานไร้คนขับหรือโดรน (drone) บันทึกภาพฝูงวาฬออร์การ่วมมือกันเข้าโจมตีวาฬสีน้ำเงิน วาฬออร์กาเป็นที่รู้จักอีกชื่อหนึ่งคือ วาฬเพชฌฆาต อาหารของพวกมันคือสัตว์เลี้ยงลูกด้วยนมที่อยู่ในทะเล เช่น โลมา และแมวน้ำ แต่ในกรณีนี้ ผู้ล่าที่น่าเกรงขามคงไม่ได้ตั้งใจที่จะต่อกรกับวาฬสีน้ำเงินตัวเต็มวัย ซึ่งถือว่าเป็นสัตว์ที่มีขนาดใหญ่ที่สุดบนโลก จากข้อมูลที่เคยบันทึกไว้ วาฬสีน้ำเงินมีความยาวลำตัวได้ถึงหนึ่งร้อยฟุต และหนักกว่า 200 ตัน จากภาพที่บันทึกได้ วาฬสีน้ำเงินสบัดตัวไปทางด้านข้างอย่างแรง คล้ายกับเป็นการสร้างกำแพงน้ำ และว่ายออกไปอย่างรวดเร็วให้พ้นวิถีของวาฬออร์กา แนนซี แบล็ก นักชีววิทยาทางทะเล กล่าว เธอบันทึกภาพเหตุการณ์นี้ได้จากดาดฟ้าเรือชมวาฬ เหตุผลที่แท้จริงเบื้องหลังการโจมตี “พวกมันอาจจะกำลังหยอกเล่นเฉยๆ ค่ะ” แบล็กกล่าว “วาฬออร์กาแหย่วาฬสีน้ำเงิน เหมือนอย่างที่แมวเล่นกับเหยื่อของมัน วาฬชนิดนี้มีนิสัยขี้เล่นและชอบเข้าสังคม” แบล็กดำเนินธุรกิจนำชมวาฬในชื่อ Monterey Bay Whale Watch ตลอด 25 ปีที่ผ่านมา เธอเฝ้าสังเกตวาฬออร์กาและสัตว์ชนิดอื่นๆ ในกลุ่มคีตาเชียน (สัตว์เลี้ยงลูกด้วยนมที่อยู่ในทะเล) แม้ว่าจะมีขนาดใหญ่กว่าวาฬออร์กา […]

พยากรณ์อากาศจากนกทะเล

พยากรณ์อากาศจากนกทะเล ในอนาคตอันใกล้นี้ ข้อมูลที่เก็บได้จากนกจมูกหลอดลายจะมีส่วนช่วยให้การพยากรณ์อากาศมีประสิทธิภาพมากยิ่งขึ้นทุกๆ ปี นกทะเลเหล่านี้จะเดินทางมายังอ่าวทางตะวันออกของเอเชียเพื่อจับคู่ผสมพันธุ์ และอพยพหนีจากฤดูหนาว วิถีชีวิตของนกจมูกหลอดลายเหล่านี้อยู่บนผิวน้ำทะเลมากกว่าแผ่นดิน นั่นจึงเป็นที่สนใจของ Katsufumi Sato นักนิเวศวิทยาจากมหาวิทยาลัยโตเกียว ตัวเขาคิดว่านกเหล่านี้มีศักยภาพพอที่จะเป็นส่วนหนึ่งในทีมงานวิจัยสภาพอากาศ ด้วยอุปกรณ์บันทึกข้อมูลของสภาพอากาศที่มีน้ำหนักเบาเป็นพิเศษ Sato ทดลองติดตั้งอุปกรณ์เหล่านี้ให้แก่นก เพื่อใช้พวกมันเก็บข้อมูลของอุณหภูมิมหาสมุทร, ความเร็วลม ไปจนถึงกระแสคลื่น เพื่อนำข้อมูลที่ได้จากผู้อยู่อาศัยตามธรรมชาติเหล่านี้ไปเปรียบเทียบกับข้อมูลจากแหล่งอื่นๆ ซึ่งจะช่วยเพิ่มประสิทธิภาพของการพยากรณ์อากาศในอนาคตได้   อ่านเพิ่มเติม นกทำความสะอาดรักแร้ให้ยีราฟ

การแลกเปลี่ยนก๊าซ (Gas Exchange)

สิ่งมีชีวิตทุกชนิดต่างต้องการพลังงาน เพื่อนำมาใช้ในกิจกรรมต่าง ๆ ของการดำรงชีวิต โดยพลังงานส่วนใหญ่ได้มาจากการย่อยสลายโมเลกุลสารอาหารหรือกระบวนการที่เรียกว่า “การแลกเปลี่ยนก๊าซ” (Gas Exchange) และ “ระบบหายใจ” (Respiratory Systems) ซึ่งจำเป็นต้องใช้ก๊าซออกซิเจน (Oxygen: O2) เพื่อก่อให้เกิดปฏิกิริยาเคมีต่าง ๆ โดยสิ่งมีชีวิตแต่ละชนิดมีกลไกและอวัยวะที่ใช้ในการแลกเปลี่ยนก๊าซแตกต่างกันออกไปตามความซับซ้อนทางโครงสร้างร่างกาย และสภาพแวดล้อมหรือถิ่นที่อยู่อาศัย ขั้นตอนของกระบวนการหายใจ สามารถแบ่งออกเป็น 2 ขั้นตอน คือ การหายใจภายนอกเซลล์ (External Respiration หรือ Breathing) คือ การนำอากาศเข้าสู่เซลล์หรือร่างกาย ก่อนเกิดการแลกเปลี่ยนก๊าซระหว่างสิ่งแวดล้อมกับอวัยวะที่ใช้หายใจ เช่น ปอด เหงือก ผิวหนัง ท่อลม และปากใบของพืช เป็นต้น การหายใจภายในเซลล์ (Internal Respiration หรือ Cellular Respiration) คือ ขั้นตอนของการย่อยสลายสารอาหาร เพื่อให้ได้มาซึ่งพลังงาน เป็นกระบวนการที่ต้องอาศัยออกซิเจนและปฏิกิริยาทางเคมีที่สลับซับซ้อน ซึ่งสิ่งมีชีวิตบางชนิดไม่จำเป็นต้องมีกระบวนการหายใจครบทั้ง 2 ขั้นตอน ในสิ่งมีชีวิตเซลล์เดียว เช่น โพรโทซัว […]