ทําไมเราถึงชอบ สิ่งที่ชอบ - นั่นเป็นเพราะพันธุกรรม - National Geographic Thailand

ทําไมเราถึงชอบสิ่งที่เราชอบ

คุณคิดว่าตัวเองรสนิยมดีใช่ไหมกับ สิ่งที่ชอบ แต่ไม่ใช่ตัวคุณหรอกที่ควรได้รับคําชม นั่นเป็นเพราะพันธุกรรมของคุณ จุลินทรีย์ในตัวคุณ และสิ่งแวดล้อมของคุณต่างหาก

คงไม่มีสิ่งใดบ่งบอกถึงความเป็นตัวเราได้ดีเท่ากับรสนิยมของเราอีกแล้ว ไม่ว่าจะเป็นอาหาร ไวน์ คู่รัก หรือผู้ลงสมัครรับเลือกตั้ง รสนิยมของเราเป็นตัวแทนอัตลักษณ์ของเรา จึงฟังดูเข้าท่าถ้าผมจะคิดว่า ความชอบและไม่ชอบของผมก่อร่างสร้างจากการใคร่ครวญอย่างรอบคอบ และการตัดสินใจด้วยเหตุผล ผ่านทางเลือกต่างๆที่ผมพอจะควบคุมได้

แล้วผมก็ได้รู้จักกับ ท็อกโซพลาสมา กอนดิไอ ในงานวิจัยของผมที่โรงเรียนแพทย์ มหาวิทยาลัยอินดีแอนา ผมสังเกตว่าปรสิตเซลล์เดียว ที. กอนดิไอ นี้ สามารถเปลี่ยนพฤติกรรมของเจ้าบ้านที่มันอาศัยอยู่ได้ มันทำให้หนูไม่กลัวแมว ในงานวิจัยบางชิ้นบอกว่า มันอาจเปลี่ยนบุคลิกภาพในมนุษย์ด้วย

การศึกษาเหล่านี้ทำให้ผมสงสัยว่า จะมีสิ่งอื่นๆที่เราไม่ได้สังเกต หล่อหลอมให้เราเป็นอย่างที่เราเป็น กำหนดสิ่งที่เราชอบและไม่ชอบหรือเปล่า ตอนผมค้นงานวิจัยทางวิทยาศาสตร์ ผมก็พบกับความจริงที่รบกวนใจว่า การกระทำของเราถูกควบคุมด้วยพลังทางชีวภาพที่ซุกซ่อนอยู่ พูดอีกอย่างคือ เราควบคุมรสนิยมส่วนตัวของเราได้น้อยมากหรือไม่ได้เลย พฤติกรรมและความพึงพอใจต่างๆ ของเราได้รับอิทธิพลอย่างลึกซึ้งจากองค์ประกอบทางพันธุกรรม จากปัจจัยทางสิ่งแวดล้อมของเราที่ส่งผลต่อยีน และจากยีนอื่นๆ ที่แทรกซึมเข้ามาในระบบร่างกายจากจุลินทรีย์นับไม่ถ้วนที่อาศัยอยู่ในตัวเรา

สิ่งที่ชอบผมว่าเรื่องนี้อาจฟังดูไร้สาระ เราถูกสอนว่าเราสามารถเป็นอะไรก็ได้ที่อยากเป็น ทำอะไรก็ได้ที่อยากทำ เรารู้สึกเหมือนเราเลือกหยิบอาหารที่ชอบ เลือกคนที่เรามอบความรักให้ หรือเลือกกาบัตรเลือกตั้งไปตามสัญชาตญาณ การบอกว่าเราเป็นหุ่นยนต์มีเลือดเนื้อที่อยู่ใต้อิทธิพลของพลังที่มองไม่เห็นนั้นเป็นเรื่องบ้าบอคอแตก

แต่หลังจากที่ผมถูกใครๆ ถามว่า ทำไมผมถึงไม่ชอบผักหลายชนิดที่คนส่วนใหญ่ชอบกัน ผมรู้สึกเหมือนตัวเองมีบางอย่างผิดปกติ ทำไมผมถึงไม่ชอบบร็อกโคลีนะ

ผมไม่ได้เป็นคนเลือกจะเกลียดผักชนิดนี้ ผมถึงได้พากเพียรศึกษาหาคำอธิบายความเกลียดของผม โชคดีที่วิทยาศาสตร์ช่วยได้ นักวิจัยพบว่าราวร้อยละ 25 ของคนทั่วไป น่าจะเกลียดบร็อกโคลีด้วยเหตุผลเดียวกับผม คนพวกนี้ถูกเรียกว่า ซูเปอร์เทสเตอร์ (supertaster) พวกเรามีความแตกต่างทางพันธุกรรมที่สร้างตัวรับรสของเรา หนึ่งในบรรดายีนเหล่านั้นคือ TAS2R38 ที่รับรสสารเคมีขมๆ อย่างไทโอยูเรีย ซึ่งมีอยู่มากมายในบร็อกโคลี ดีเอ็นเอของผมมอบตัวรับรสที่ทำให้สารประกอบไทโอยูเรียขมอย่างน่าขยะแขยงแต่มันอาจเป็นวิธีที่ดีเอ็นเอใช้ขัดขวางไม่ให้ผมกินพืชอันตราย

คําอธิบายที่ว่าทำไมผมถึงเกลียดบร็อกโคลีนั้น ทั้งทำให้ผมพ้นผิดและรบกวนใจผมด้วย ผมโล่งใจที่ความรังเกียจผักกลุ่มกะหลํ่าไม่ใช่ความผิดของผม และผมไม่ได้เลือกยีนก่อนเกิดเอง แต่ความโล่งใจก็เปลี่ยนเป็นหวั่นใจเมื่อผมสงสัยว่า แล้วสิ่งอื่นๆ ที่กำหนดว่าผมเป็นใครนั้น อยู่นอกเหนือคำสั่งของผมด้วยหรือเปล่า มีอะไรสักกี่อย่างที่ผมควบคุมได้ด้วยตัวเองจริงๆ

แล้วรสนิยมของผมเกี่ยวกับผู้หญิงล่ะ ผมต้องควบคุมมันได้แน่นอน ลองเริ่มด้วยเรื่องพื้นๆ เช่น ทำไมผมถึงถูกใจผู้หญิงแทนที่จะเป็นผู้ชาย นี่ย่อมไม่ใช่การตัดสินใจด้วยสติที่ผมทำ ขณะนั่งบนหาดในเย็นวันหนึ่งขณะตรึกตรองเรื่องชีวิต แต่เป็นเพราะผมเกิดมาอย่างนี้ องค์ประกอบทางพันธุกรรมเกี่ยวกับเพศสภาพของมนุษย์ยังคลุมเครืออยู่ แต่ที่แจ่มแจ้งคือมันไม่ได้เป็นทางเลือก

ไม่ว่าเราจะมีเพศวิถีแบบใด เราคล้ายจะมีเหตุผลภายในเกี่ยวกับลักษณะอันพึงปรารถนาในคู่ของเรา ลักษณะต่างๆ เช่น ฟันสวยได้รูป ดวงตาเป็นประกาย และผมดกหนานั้นโดยทั่วไปถือกันว่ามีเสน่ห์

นักจิตวิทยาวิวัฒนาการเตือนเราว่า โดยแก่นแท้แล้ว ทุกอย่างที่เราทำ เกิดจากแรงขับใต้สำนึกเพื่อเอาตัวรอดและสืบทอดพันธุกรรม หรือไม่ก็ช่วยเหลือผู้อื่น (เช่นครอบครัว)ที่มียีนเหมือนเรา พวกเขาสันนิษฐานต่อไปว่าลักษณะทางกายภาพหลายอย่างที่เราคิดว่าเป็นเสน่ห์นั้น คือสัญญาณของสุขภาพและความแข็งแกร่งทางกาย

วิทยาศาสตร์ยังมีคำปลอบโยนให้ด้วยว่า เหตุใดการจีบของเราบางหนจึงถูกปฏิเสธ งานวิจัยที่รู้จักกันดีให้พวกผู้หญิงดมกลิ่นบริเวณใต้วงแขนของเสื้อยืดที่ผู้ชายสวม และให้คะแนนกลิ่น ยิ่งพันธุกรรมระบบภูมิคุ้มกันของผู้ชายและผู้หญิงเหมือนกันเท่าใด กลิ่นของเสื้อยืดก็ยิ่งเหม็นสำหรับผู้หญิงมากเท่านั้น มีคำอธิบายเชิงวิวัฒนาการเกี่ยวกับเรื่องนี้อย่างได้เรื่องได้ราวว่า หากภูมิคุ้มกันของพ่อแม่เหมือนกันมากเกินไป ลูกหลานก็จะไม่มีกำลังพอจะสู้กับเชื้อโรค ในกรณีนี้ยีนใช้ตัวรับกลิ่นเป็นตัวแทนในการประเมินว่า ดีเอ็นเอของอีกฝ่ายจะเข้ากับของเราได้ดีหรือไม่ งานวิจัยลักษณะนี้ยืนยันว่าเคมีระหว่างบุคคลเป็นสิ่งสำคัญจริงๆ

สิ่งที่น่าเจ็บใจคือระดับของการควบคุม พันธุกรรมมีอำนาจเหนือทางเลือกในชีวิตของเรา ผมสืบค้นหาพื้นที่ที่แน่ใจได้ว่าไปพ้นจากเงื้อมมือของดีเอ็นเอ นั่นคือรสนิยมเกี่ยวกับผู้นำทางการเมืองของเรา มันง่ายที่จะนึกภาพถึงยีนที่มีบทบาทในการทำให้ใครสักคนถนัดขวาหรือถนัดซ้าย แต่การที่คนจะเอนไป
ทางฝ่ายขวาหรือฝ่ายซ้ายเล่า ถึงมันจะดูเหมือนว่าไม่เกี่ยวกันแต่การเลือกตั้งก็เกี่ยวด้วย และดีเอ็นเอก็เป็นฝ่ายชนะอีกอยู่ดี

นักวิทยาศาสตร์พบว่าลักษณะทางบุคลิกภาพเฉพาะตัวมีแนวโน้มจะเกี่ยวข้องกับการที่คนเราอยู่ขั้วตรงข้ามกันในทางการเมือง โดยทั่วไป พวกเสรีนิยมมีแนวโน้มจะเป็นคนเปิดใจกว้าง สร้างสรรค์ และมองหาสิ่งใหม่ๆ ส่วนพวกอนุรักษนิยมมีแนวโน้มไปทางความสงบเรียบร้อย เป็นไปตามธรรมเนียมและชอบเสถียรภาพมากกว่า แฝดเหมือนที่ถูกแยกจากกันตอนเกิดและเลี้ยงดูมาในสิ่งแวดล้อมที่แตกต่างกัน พอได้พบกันอีกครั้งก็มักพบว่ามีจุดยืนทางการเมืองร่วมกัน เป็นสิ่งที่บอกว่า องค์ประกอบทางพันธุกรรมเกี่ยวข้องกับทิศทางทางการเมืองของเรา

งานวิจัยหลายชิ้นบอกว่าความแปรผันของยีนตัวรับโดปามีน D4 (DRD4) มีอิทธิพลว่าเราจะโหวตให้ฝ่ายไหน โดปามีนเป็นสารสื่อประสาทสำคัญในสมองที่เกี่ยวข้องกับศูนย์กลางด้านการตอบแทนและความพึงพอใจ ความแปรผันของ DRD4 เกี่ยวข้องกับการมองหาสิ่งใหม่ๆและพฤติกรรมกล้าเสี่ยง ซึ่งมักสัมพันธ์กับเสรีนิยมมากกว่า

งานวิจัยอีกชิ้นหนึ่งแสดงให้เห็นว่าพื้นที่ส่วนหนึ่งในสมองของพวกอนุรักษนิยมกับเสรีนิยมแตกต่างกัน มันอาจส่งถึงการตอบสนองต่อสิ่งเร้าที่ตึงเครียด ตัวอย่างเช่น พวกอนุรักษนิยมมีแนวโน้มจะมีอะมิกดาลาขนาดใหญ่ ซึ่งเป็นศูนย์กลางความกลัวในสมอง และมีปฏิกิริยาทางกายต่อภาพและเสียงที่ไม่พึงพอใจรุนแรงกว่า เมื่อนำมาพิจารณาร่วมกัน ความแตกต่างทางชีวภาพเช่นนี้อาจมีส่วนช่วยอธิบายว่าเหตุใดมันถึงยากเย็นนักสำหรับเสรีนิยมหรืออนุรักษนิยมที่จะทำให้อีกฝ่าย “ตาสว่าง” ได้ ก็เรากำลังขอให้เขาเปลี่ยนไม่ใช่แค่ความคิด แต่ยังฝืนร่างกายตัวเองด้วย

ตัวอย่างเหล่านี้เป็นเพียงยอดของภูเขานํ้าแข็งเท่านั้น ความจริงพฤติกรรมของมนุษย์ทุกคน ตั้งแต่การเสพติด เสน่ห์ดึงดูดไปถึงความกังวลใจ ล้วนผูกพันอยู่กับสลักทางพันธุกรรม แต่ถึงอย่างนั้นก็ไม่ใช่ว่าเราถูกกำหนดให้เป็นทาสดีเอ็นเอของเราเอง ดีเอ็นเอสร้างสมองชั้นเลิศให้มนุษย์จนเข้าใจเกมของดีเอ็นเอได้และด้วยการคิดค้นการปรับแก้พันธุกรรมขึ้น เราจึงกลายเป็นสปีชีส์ที่สามารถแก้ไขคำสั่งทางพันธุกรรมของตัวเองได้

วิทยาศาสตร์แสดงให้เห็นว่าเราไม่ได้เป็นสิ่งที่เราคิดว่าเราเป็น ยังมีตัวประหลาดในร่างกายที่ขับเคลื่อนทุกการกระทำ และลักษณะบุคลิกที่เราคิดว่าเป็นความต้องการของเราเอง ตอนแรกการตระหนักนี้ทำให้เราท้อแท้ แต่ว่าความรู้คือพลัง การรู้ถึงพื้นฐานระดับโมเลกุลเกี่ยวกับพฤติกรรมทางลบของเราควรทำ ให้เราอยู่ในจุดที่ดีกว่าเดิมในแง่ของการควบคุมหรือบำบัดรักษาด้วยการยอมรับว่าคนอื่นๆมีทางเลือกไม่มากนักในการเป็นอย่างที่พวกเขาเป็น ควรทำให้เราเห็นใจและกรุณาขึ้น บางทีด้วยความมั่นใจว่าเราควบคุมทุกอย่างไม่ได้ เราจะยืนหยัดต่อแรงกระตุ้นที่จะสรรเสริญหรือด่าทอ และพยายามทำความเข้าใจมากกว่าเดิม

เราเป็นแค่กองพันธุกรรมเท่านั้นหรือ

ในทางเทคนิคก็ใช่ แต่แม้เราจะจมอยู่ใต้กองจีโนม แต่ก็ยังมีตัวเราหลายภาคอยู่คนที่เราเห็นในกระจกเป็นหนึ่งในนั้นที่โผล่ขึ้นมาด้วยปัจจัยเฉพาะสารพันอย่างที่เราเคยประสบมานับแต่ปฏิสนธิ วิทยาศาสตร์สมัยใหม่ของอภิพันธุกรรมเป็นการศึกษาว่าการเปลี่ยนแปลงทางเคมีสร้างดีเอ็นเออย่างไร หรือโปรตีนที่ทำปฏิกิริยากับดีเอ็นเอส่งผลต่อกิจกรรมของยีนอย่างไร

ดีเอ็นเออาจเปลี่ยนแปลงได้ด้วยปัจจัยทางสิ่งแวดล้อมในทางที่จะส่งผลอย่างลึกซึ้งต่อพัฒนาการและพฤติกรรม ไม่นานมานี้มันยังแสดงให้เห็นว่าจุลินทรีย์ในร่างกายเราหรือจุลชีวนิเวศ อาจเป็นปัจจัยทางสิ่งแวดล้อมสำคัญที่ส่งผลต่อพฤติกรรมมากมาย ตั้งแต่การกินเกินขนาดไปจนถึงภาวะซึมเศร้า สรุปแล้วเราคือพันธุกรรมของเรา แต่พันธุกรรมของเราไม่อาจถูกประเมินนอกบริบททางสิ่งแวดล้อมได้พันธุกรรมก็เหมือนคีย์เปียโน แต่สิ่งแวดล้อมนั้นเป็นผู้เล่นให้เป็นเพลง

เรื่อง บิล ซัลลิแวน

บิล ซัลลิแวน เป็นศาสตราจารย์ด้านเภสัชวิทยาและจุลชีววิทยาที่โรงเรียนแพทย์ มหาวิทยาลัยอินดีแอนา ซึ่งเขาศึกษาโรคติดต่อและพันธุกรรม


อ่านเพิ่มเติม ทราเวล-บล็อกเกอร์ หาเงินอย่างไร ผ่านโซเชียลมีเดีย 

ทราเวล-บล็อกเกอร์
การรวบรวมข้อมูลประสบการณ์การไปเที่ยว คือส่วนหนึ่งในหน้าที่ของทราเวล-บล็อกเกอร์ ภาพถ่ายโดย Getty Images

เรื่องแนะนำ

แม่เหล็ก และสนามแม่เหล็กโลก

แม่เหล็ก มีแรงดึงดูดและแรงผลักต่อโลหะบางชนิด การค้นพบ แม่เหล็ก (Magnet) และสนามแม่เหล็กโลก แม่เหล็กถูกค้นพบครั้งแรก โดยชายเลี้ยงแกะในดินแดนแมกนีเซีย (Magnesia) พื้นที่ทางตอนเหนือของประเทศกรีซ เมื่อราว 5 พันปีก่อน แรงแม่เหล็ก หรือแรงดึง ที่ดูดโลหะแปลกปลอมเข้าหานั้น ถูกพบภายในก้อนหินสีดำใต้พื้นผิวโลก หินที่ถูกขนานนามว่า “แมกเนต” (Magnet) หรือ “แม่เหล็ก” หินแม่เหล็กในธรรมชาติเป็นสารประกอบออกไซด์ของเหล็ก (Fe3O4) หรือ “แมกนีไทต์” (Magnetite) เป็นวัตถุที่มีคุณสมบัติในการดึงดูดโลหะบางชนิด โดยเฉพาะวัตถุที่มีองค์ประกอบหลักเป็นเหล็ก (Fe) โครเมียม (Cr) แมงกานิส (Mn) และนิกเกิล (Ni) หรือที่เรียกกันว่า “สารแม่เหล็ก” (Ferromagnetic material) ในอดีต มนุษย์นำหินสีดำนี้มาใช้ประโยชน์มากมาย ทั้งการใช้เป็นหินนำทาง (Lodestone) ของชาวกรีกและโรมัน รวมถึงการนำมาใช้ประดิษฐ์เข็มทิศเพื่อนำทางและใช้ในศาสตร์พยากรณ์ของชาวจีนโบราณ โดยเข็มทิศเรือนแรกของโลกถูกสร้างขึ้นในสมัยราชวงศ์ฮั่นของจีน เมื่อหลายพันปีมาแล้ว ก่อนได้รับการพัฒนาเรื่อยมาจนเป็นเข็มทิศในยุคปัจจุบัน แม่เหล็กและอำนาจแม่เหล็ก (Magnet and Magnetism) แม่เหล็กมีแรงดึงดูดและแรงผลักต่อโลหะบางชนิด ซึ่งเป็นผลมาจากการเคลื่อนที่ของประจุไฟฟ้าภายในโครงสร้างของแม่เหล็กที่แตกต่างจากวัตถุทั่วไป […]

สุนัขเปลี่ยนสีหน้าเมื่อมนุษย์ให้ความสนใจ

สีหน้าของสุนัขไม่ได้มีดีแค่ไว้สำหรับเป็นคลิปบันเทิงบนโลกออนไลน์ แต่มันยังเป็นข้อมูลสำคัญที่แสดงให้เห็นวิวัฒนาการของการเป็นสุนัขเลี้ยงอีกด้วย นักวิทยาศาสตร์ประเมินปฏิกิริยาที่แสดงออกผ่านสีหน้าของสุนัข เมื่อเผชิญกับมนุษย์และเมื่อมนุษย์หันหลังให้ พวกเขาพบว่าขณะที่สุนัขถูกมนุษย์จ้องมองพวกมันสามารถแสดงสีหน้าได้หลากหลายรูปแบบ ทั้งนี้สุนัขเป็นสัตว์ที่อยู่เคียงข้างกับมนุษย์มานาน มิตรภาพต่างสปีชีส์นี้มีอายุย้อนไปได้ถึง 30,000 ปีก่อน และสายสัมพันธ์อันดีระหว่างเราเป็นส่วนหนึ่งที่เราวิวัฒนาการร่วมกันมาเพื่อการสื่อสารที่ดีขึ้น   อ่านเพิ่มเติม : วิทยาศาสตร์ว่าด้วยความน่ารัก, ทดลองให้ปลาไหลไฟฟ้าช็อต เพื่อวิทยาศาสตร์

ความหนาแน่น (Density) ของสสาร

ความหนาแน่น (Density) คืออัตราส่วนของมวลต่อหนึ่งหน่วยปริมาตร ซึ่งเป็นสมบัติพื้นฐานทางกายภาพของสสาร โดยวัตถุที่มีมวลในหนึ่งหน่วยพื้นที่ที่กำหนดมากเท่าไหร่ ยิ่งแสดงให้เห็นว่าวัตถุดังกล่าวมีความหนาแน่นมากเท่านั้น นอกจากนี้ ความหนาแน่นยังแปรผันตามมวลอะตอม (Atomic Mass) ของธาตุหรือมวลโมเลกุลของสารประกอบอีกด้วย สูตรคำนวณความหนาแน่น ในการคำนวณหาความหนาแน่นของสสารความหนาแน่นมักถูกแสดงผลด้วยสัญลักษณ์ p (โร) ซึ่งเป็นตัวอักษรตัวที่ 17 ในภาษากรีกโดยคำนวณผ่านความสัมพันธ์ระหว่างมวล (Mass) หรือปริมาณเนื้อของสสารที่ถูกบรรจุอยู่ภายในวัตถุต่อหนึ่งหน่วยปริมาตร (Volume) p = m/v โดยหน่วยของความหนาแน่นที่ผู้คนนิยมใช้กันคือ กิโลกรัมต่อลูกบาศก์เมตร (kg/m3) และกรัมต่อลูกบาศก์เซนติเมตร (g/cm3) และจากสูตรการคำนวณหาความหนาแน่นข้างต้นแสดงให้เห็นว่า ความหนาแน่นนั้นเป็นอัตราส่วนของมวลต่อปริมาตรที่ไม่ได้คำนึงถึงปริมาณของวัตถุหรือสารตั้งต้นทั้งหมดที่มีอยู่ในขณะนั้น ดังนั้น ความหนาแน่นจึงเป็นสมบัติที่ไม่ได้ขึ้นอยู่กับปริมาณของสสาร (Intensive Property) ซึ่งโดยทั่วไป เราอาจสับสนระหว่างความหนาแน่นกับน้ำหนัก เนื่องจากวัตถุ 2 ชิ้นที่มีปริมาตรเท่ากัน ชิ้นที่มีความหนาแน่นมากกว่ามักมีน้ำหนักที่มากกว่า ซึ่งในความเป็นจริง ความหนาแน่นเป็นความสัมพันธ์ระหว่างมวลต่อปริมาตร จึงไม่สามารถหาข้อสรุปจากการพิจารณามวลหรือปริมาตรของสสารเพียงส่วนเดียว แต่ต้องพิจารณาตัวแปรทั้งสองควบคู่กันไป อ่านเพิ่มเติม : ความหนาแน่นของน้ำ ตารางแสดงความหนาแน่นของสสารทั่วไป สสาร ความหนาแน่น (g/cm3) อากาศ 0.0013 ขนนก […]