ปลายหางของอสุจิเป็นรูปทรงเกลียว - National Geographic Thailand

ปลายหางของอสุจิเป็นรูปทรงเกลียว

ปลายหางของอสุจิเป็นรูปทรงเกลียว

เราทุกคนรู้กันดีว่าสเปิร์มหรืออสุจิคือเซลล์สืบพันธุ์ของมนุษย์เพศชาย พวกมันมีลักษณะคล้ายกับลูกอ๊อดตัวโปร่งแสงที่ประกอบด้วยส่วนหัว, ส่วนลำตัว และหางยาวซึ่งใช้ในการแหวกว่ายเข้าไปหาไข่ ภายในเวลา 1 วินาทีร่างกายของมนุษย์ผู้ชายสามารถผลิตสเปิร์มได้ 1,500 ตัว และในการหลั่งแต่ละครั้งจะปลดปล่อยสเปิร์มมากถึง  250 ล้านตัวเลยทีเดียว

แม้ว่าองค์ความรู้เกี่ยวกับกระบวนการสืบพันธุ์ นักวิทยาศาสตร์จะทราบกับดีอยู่แล้ว แต่ทว่าโครงสร้างของเซลล์สืบพันธุ์นั้นกลับยังไม่ได้ถูกศึกษาอย่างละเอียดเท่าใด

ด้วยเทคโนโลยีใหม่ที่เรียกว่า Cryogenic electron tomography (Cryo-ET) หรือกล้องจุลทรรศน์อิเล็กตรอนแบบแช่แข็ง นวัตกรรมนี้สามารถซูมภาพเข้าไปยังเซลล์และให้ผลลัพธ์ที่เป็นภาพสามมิติออกมาได้ เทคโนโลยีใหม่นี้ได้รับรางวัลโนเบลสาขาเคมีประจำปี 2017 ไปครอง ซึ่ง Davide Zabeo นักศึกษาปริญญาเอกจากมหาวิทยาลัยกอเทนเบิร์กในสวีเดน และทีมงานวิจัยของเขาได้นำ Cryo-ET มาทดลองใช้กับอสุจิของมนุษย์

ผลการวิจัยถูกแผยแพร่ลงในวารสาร Scientific Reports จากกล้องจุลทรรศน์เผยให้เห็นว่าที่ปลายหางของอสุจินั้นมีเซลล์รูปร่างเป็นขดเกลียวที่หมุนวนไปทางซ้ายมือ ซึ่งเป็นข้อมูลใหม่ที่ไม่เคยพบมาก่อน การค้นพบครั้งนี้อาจช่วยฉายภาพให้เห็นว่าเหตุใดอสุจิบางตัวจึงว่ายเข้าหาไข่ได้รวดเร็วกว่าอสุจิตัวอื่น และอาจนำไปสู่การพัฒนายาที่ช่วยแก้ไขปัญหาให้แก่ผู้ชายที่มีบุตรยากตลอดจนาคุมกำเนิดที่มีประสิทธิภาพมากขึ้น

Cryogenic electron tomography คือการรวมเทคโนโลยีกล้องจุลทรรศน์อิเล็กตรอนเข้ากับ CT สแกน ตัวอย่างที่นำมาสแกนก็เช่น เซลล์, เนื้อเยื่อ หรือชิ้นส่วนอวัยวะต่างๆ ซึ่งจะมาในรูปแบบของการแช่แข็ง เพื่อช่วยให้เนื้อเยื่อนั้นๆ ยังคงสภาพเดิมได้มากที่สุดใกล้เคียงกับธรรมชาติ  “เราจะได้ภาพที่ดีที่สุดของเซลล์ในขณะที่มันยังมีชีวิต”  Gary Morgan ผู้ร่วมวิจัยจากมหาวิทยาลัยโคโลราโดกล่าว และผลที่ได้ก็คือภาพสามมิติของเซลล์นั้นๆ

ปกติแล้วเซลล์จะมีความบางมากเกินไปที่จะตรวจหาผลลัพธ์เป็นภาพสามมิติ แต่ด้วยเทคโนโลยี Cryo-CT หางของสเปิร์มสามารถตรวจสอบได้ด้วยเทคโนโลยีดังกล่าว ก่อนหน้านี้เซลล์อสุจิเคยถูกวิจัยเป็นภาพสามมิติมาแล้วในปี 2012 ผลการวิจัยพบว่าส่วนใหญ่แล้วเซลล์อสุจิเคลื่อนที่ในทิศทางตรง มีบ้างที่เคลื่อนที่เป็นวิถีโค้ง และทั้งหมดว่ายวนไปมาตลอดเวลา

อสุจิ
โครงสร้างรูปเกลียวที่ไม่เคยพบมาก่อนของปลายหางอสุจิ
ภาพโดย มหาวิทยาลัยกอเทนเบิร์ก

สำหรับส่วนหางของสเปิร์มนั้นประกอบด้วยสามส่วนด้วยกัน ตอนบนมีกลุ่มไมโทคอนเดรียที่ใช้เป็นพลังงานเคลื่อนที่ของอสุจิ ตอนกลางประกอบด้วยไมโครทูบูลและส่วนปลายซึ่งมีขนาดเพียง 1 ใน 10 ของความยาวหางทั้งหมด ทีมนักวิจัยพบว่ามันมีเซลล์โครงสร้างรูปเกลียวที่หมุนวนไปทางซ้ายมือ

ณ ตอนนี้ นักวิทยาศาสตร์เองก็ยังไม่เข้าใจถ่องแท้ว่าเหตุใดสเปิร์มถึงมีปลายหางเป็นรูปเกลียว แต่พวกเขามีทฤษฎีบางอย่าง โครงสร้างเกลียวน่าจะทำหน้าที่เป็นเหมือนจุกก๊อกกั้นไม่ให้เซลล์ไมโครทูบูลภายในเติบโตหรือหดตัว ทั้งยังช่วยเพิ่มพลังในการว่ายเข้าหาเซลล์ไข่ในการสืบพันธุ์อีกด้วย

หากทีมนักวิจัยพบข้อมูลเพิ่มเติมเกี่ยวกับโครงสร้างหางรูปเกลียว พวกเขาจะศึกษาต่อได้ว่าโครงสร้างนี้มีส่วนช่วยให้อสุจิว่ายเข้าหาไข่ได้อย่างมีประสิทธิภาพมากขึ้นอย่างไร และในท้ายที่สุดอาจนำไปสู่การช่วยแก้ไขปัญหาแก่บรรดาผู้ชายที่มีบุตรยาก และด้วยการศึกษาวิจัยเพิ่มเติมนักวิทยาศาสตร์อาจพบกุญแจที่เชื่อมโยงกันระหว่างการมีบุตรยากกับโครงสร้างปลายหางรูปเกลียวของอสุจิ

ผลการศึกษาเหล่านี้จะนำไปสู่การผลิตยาในอนาคตที่จะช่วยแก้ไขภาวะมีบุตรยากได้ ตลอดจนพัฒนาวิธีการคุมกำเนิดในรูปแบบใหม่  “สิ่งเหล่านี้แสดงให้เห็นว่าเราเรียนรู้เพิ่มเติมกันได้มากแค่ไหนจากเทคโนโลยีเหล่านี้”  Zabeo กล่าวเสริม

เรื่อง Elaina Zachos

 

อ่านเพิ่มเติม

ปะการังผสมพันธุ์เพียงหนึ่งครั้งต่อปี

เรื่องแนะนำ

นักบินอวกาศจัดการกับประจำเดือนอย่างไร?

ณ ปัจจุบัน การใช้ยาคุมกำเนิดคือตัวเลือกที่ดีและปลอดภัยที่สุดสำหรับนักบินอวกาศที่ไม่ต้องการมี ประจำเดือน ในระหว่างการปฏิบัติภารกิจ

สารละลาย ในธรรมชาติ (Solutions)

สารละลาย เป็นสารที่เกิดขึ้นโดยทั่วไปตามธรรมชาติ บางครั้งอาจเกิดจากการสังเคราะห์ขึ้นโดยมนุษย์ สารละลาย (Solutions) คือ สารผสมที่เป็นเนื้อเดียวกัน (Homogenous Mixture) ซึ่งเกิดจากการรวมตัวกันของสารบริสุทธิ์ตั้งแต่ 2 ชนิดขึ้นไป โดยมีสารที่มีปริมาณมากกว่าเป็น “ตัวทำละลาย” (Solvent) และสารที่มีปริมาณน้อยกว่าเป็น “ตัวถูกละลาย” (Solute) การผสมผสานกันของสารทั้ง 2 ประเภท ทำให้เกิดสารละลายเนื้อเดียวที่เกิดขึ้นได้ในทุกสถานะของสสาร คุณสมบัติของสารละลาย เป็นสารเนื้อเดียวกันในทุกส่วน ไม่เกิดการตกตะกอนหรือเกิดการเปลี่ยนแปลง เมื่อเวลาผ่านไป ตัวถูกละลายไม่สามารถแยกออกจากสารละลายผ่านการกรองทางกายภาพได้ (Mechanical Filtration) สารละลายไม่ทำให้เกิดการกระเจิงของแสง ในการกระบวนเกิดสารละลาย ตัวทำละลายทำหน้าที่เร่งให้เกิดการสลายตัวของตัวถูกละลาย อย่างเช่น น้ำเกลือ ผลึกเกลือ ซึ่งเป็นโมเลกุลของตัวถูกละลายที่รวมกลุ่มกันเป็นอนุภาคขนาดใหญ่ เมื่อสัมผัสกับน้ำ ซึ่งเป็นตัวทำละลายที่ดี โมเลกุลของน้ำจะทำการแทรกซึมและสลายการยึดเหนี่ยวระหว่างโมเลกุลของเกลือ จนแตกออกเป็นโมเลกุลขนาดเล็กลง โดยสารละลายน้ำเกลือ ยังคงมีเกลือหลงเหลืออยู่ในสารละลาย แต่อนุภาคของเกลือถูกจับแยกออกจากกันและถูกรายล้อมด้วยโมเลกุลของน้ำแทนการจับกลุ่มกันเป็นก้อนหรือผลึกเกลือขนาดใหญ่อย่างในตอนตั้งต้น ชนิดของสารละลาย สารละลายอิ่มตัว (Saturated Solution) คือ สารละลายที่ตัวถูกละลายไม่สามารถละลายในตัวทำละลายได้อีก ณ อุณหภูมิคงที่ แต่เมื่อทำการเพิ่มอุณหภูมิให้สารละลายสูงขึ้น อาจทำให้ตัวถูกละลายสามารถละลายเพิ่มขึ้นได้อีก จนกลายเป็นสารละลายที่เรียกว่า “สารละลายอิ่มตัวยิ่งยวด” […]

กลุ่มดาวค้างคาว หรือกลุ่มดาวแคสซิโอเปีย (Cassiopeia)

กลุ่มดาวค้างคาว มีประวัติการบันทึกมาอย่างยาวนานพร้อมๆ กับดาวหมีใหญ่ กลุ่มดาวแคสซิโอเปีย (Cassiopeia) หรือที่คนไทยรู้จักกันในนาม กลุ่มดาวค้างคาว เป็น 1 ใน 88 กลุ่มดาวสากลของโลก เป็นกลุ่มดาวฤกษ์ที่ง่ายต่อการสังเกตและจดจำ จากการมีดาวฤกษ์สุกสว่างห้าดวง ประกอบกันเป็นรูปร่างคล้ายตัวอักษร “W” บนซีกฟ้าเหนือตรงข้ามกับกลุ่มดาวหมีใหญ่ (Ursa Major) ซึ่งครอบคลุมพื้นที่ราว 598 ตารางองศาหรือมีขนาดใหญ่เป็นลำดับที่ 25 ของกลุ่มดาวทั้งหมด กลุ่มดาวค้างคาวเป็นกลุ่มดาวที่สามารถพบเห็นได้ตลอดทั้งปีในท้องฟ้าฝั่งซีกโลกเหนือ แต่จะมองเห็นได้ชัดเจนที่สุดในเดือนพฤศจิกายนหรือช่วงฤดูหนาว และจะปรากฏขึ้นให้เห็นบนท้องฟ้าของฝั่งซีกโลกใต้ในบางพื้นที่ของช่วงปลายฤดูใบไม้ผลิเท่านั้น อ่านเพิ่มเติม : การศึกษาเรื่องกลุ่มดาวบนท้องฟ้า นอกจากนี้ กลุ่มดาวแคสซิโอเปียยังเป็น 1 ใน 48 กลุ่มดาวดั้งเดิมที่ถูกจารึกอยู่ในบันทึกของปโตเลมี (Ptolemy) ในช่วงศตวรรษที่สอง เช่นเดียวกับกลุ่มดาวหมีใหญ่อีกด้วย โดยถูกตั้งชื่อตามราชินีแคสซิโอเปีย (Cassiopeia) ในตำนานเทพนิยายกรีกปรัมปรา ก่อนที่กลุ่มดาวกลุ่มนี้จะถูกรับรองและตั้งชื่ออย่างเป็นทางการว่า “ราชินีแคสซิโอเปีย” (Cassiopeia the Queen) จากสหพันธ์ดาราศาสตร์สากล (International Astronomical Union: IAU) ในปี 1930 ขณะที่คนไทยมองเห็นกลุ่มดาวฤกษ์ […]

ธาตุกัมมันตรังสี (Radioactive Element)

ธาตุบางชนิดโดยเฉพาะอย่างยิ่งธาตุที่มีมวลอะตอมสูง มีความสามารถในการแผ่รังสีออกมาได้เองอย่างต่อเนื่อง โดยปรากฏการณ์การแผ่รังสีที่เกิดขึ้นนี้เรียกว่า กัมมันตภาพรังสี ขณะที่ธาตุดังกล่าวเรียกว่า ธาตุกัมมันตรังสี ธาตุกัมมันตรังสี (Radioactive Element) คือธาตุที่มีองค์ประกอบภายในนิวเคลียส (Nucleus) ไม่เสถียร ส่งผลให้เกิดการสลายตัว หรือการปล่อยรังสีของธาตุอยู่ตลอดเวลา เนื่องจากปรากฏการณ์การแผ่รังสีของธาตุเป็นกระบวนการปรับสมดุล เพื่อสร้างความเสถียรภายในธาตุ ซึ่งในธรรมชาติ ธาตุกัมมันตรังสีมักเป็นธาตุที่มีมวลมากหรือมีเลขอะตอมสูงเกินกว่า 82 เช่น เรเดียม (Radium) ที่มีเลขมวลอยู่ที่ 226 และเลขอะตอม 88 หรือยูเรเนียม (Uranium) มีเลขมวลอยู่ที่ 238 และเลขอะตอม 92 การค้นพบธาตุกัมมันตรังสี ธาตุกัมมันตรังสีค้นพบครั้งแรกในปี 1896 โดยนักเคมีชาวฝรั่งเศส อองตวน อองรี แบ็กเกอเรล (Antoine Henri Becquerel) จากความบังเอิญที่เขานำฟิล์มถ่ายรูปวางไว้ใกล้เกลือโพแทสเซียมยูเรนิลซัลเฟต ซึ่งสร้างรอยดำบนแผ่นฟิล์มเสมือนการถูกแสงผ่านเข้าไป เขาจึงเชื่อว่ามีรังสีพลังงานสูงบางชนิดปลดปล่อยออกมาจากเกลือยูเรเนียมก้อนนั้น นอกจากนี้ เขาทำการทดลองกับสารประกอบของยูเรเนียมชนิดอื่น ต่างให้ผลลัพธ์ไปในทิศทางเดียวกัน โดยหลังจากการค้นพบดังกล่าวเพียง 2 ปี มารี คูรี (Marie Curie) […]