ดาวฤกษ์ ดวงดาวที่ส่องสว่างอยู่เต็มนภาในยามราตรี กำเนิดมาจากอะไร

ดาวฤกษ์ : ดวงดาวที่ส่องประกายประดับนภาราตรี

เหล่าดวงดาวที่เปล่งประกายยามราตรี มีแสงส่องสว่างในตัวเอง ความงดงามของนภายามราตรี เราเรียกดวงดาวเหล่านั้นว่า ดาวฤกษ์

ดาวฤกษ์ (Stars) คือวัตถุขนาดใหญ่ในอวกาศ ที่มีแสงสว่างและพลังงานในตัวเอง เป็นมวลก๊าซขนาดใหญ่ที่ให้กำเนิดอณูพื้นฐานในจักรวาล ทั้งการสร้างและส่งผ่านพลังงาน แสงสว่างและธาตุต่างๆ ไปในห้วงอวกาศ ดาวฤกษ์นั้นถือกำเนิดภายใต้การรวมตัวกันของกลุ่มก๊าซและฝุ่นขนาดใหญ่ในอวกาศ ที่เรียกว่า “หมอกเพลิง” หรือ “เนบิวลา” (Nebula)

เนบิวลาที่อยู่ใกล้โลกที่สุด คือ เฮลิกซ์ เนบิวลา (Helix Nebula) ซึ่งเป็นดาวฤกษ์ที่กำลังเสื่อมถอยและใกล้สิ้นอายุขัย อยู่ห่างจากโลกราว 700 ปีแสง ดาวฤกษ์ในกาแล็กซี มีจำนวนมากกว่าพันล้านดวง ซึ่งปัจจุบันการนับจำนวนดวงดาวในจักรวาลยังเป็นเรื่องที่เป็นไปไม่ได้ แต่นักดาราศาสตร์คาดการณ์ว่ามีดาวฤกษ์ราว 3 แสนล้านดวงในกาแล็กซีทางช้างเผือก (Milky Way Galaxy) ของเรา

เนบูลา, กำเนิดดวงดาว, ดาวฤกษ์
เนบูลา

การเกิดของดวงดาว

วิดีโอเรื่องราวของดาวฤกษ์

ดาวฤกษ์ ถือกำเนิดขึ้นภายในกลุ่มก้อนก๊าซและฝุ่นผงขนาดใหญ่ในอวกาศ หรือเนบิวลา ซึ่งมีไฮโดรเจนเป็นองค์ประกอบหลัก ธาตุตั้งต้นของทุกสรรพสิ่งในจักรวาล การรวมตัวกันของกลุ่มก้อนก๊าซและฝุ่นผง เกิดจากแรงดึงดูดระหว่างกันของสสาร

ตามกฎความโน้มถ่วงแห่งเอกภพ (Law of Universe) ทำให้เนบิวลามีขนาดใหญ่ขึ้นตามกาลเวลา มวลที่มากขึ้นและแรงดึงดูดที่มากขึ้น ก่อให้เกิดการหมุนวงของกลุ่มก๊าซและฝุ่นผงคล้ายจานหมุนขนาดใหญ่ จนเนบิวลาเกิดการยุบตัวลงเข้าสู่จุดศูนย์กลางจากแรงโน้มถ่วงของตัวมันเอง

ดาวเคราะห์ในระบบสุริยะ

การยุบตัวลงนั้น ส่งผลให้แรงดันภายในและอุณหภูมิของเนบิวลาเพิ่มสูงขึ้นตามกฎธรรมชาติของก๊าซ อุณหภูมิภายในของเนบิวลาจะสูงขึ้นถึง 1 แสน องศาเซลเซียส และก่อให้เกิดการเปลี่ยนรูปของก๊าซเป็นพลังงานและความร้อน เกิดการเปล่งแสง ส่งผลให้แก่นกลางของเนบิวลาเรืองแสง ซึ่งสถานภาพนี้ มีชื่อเรียกว่า “ดาวฤกษ์เกิดก่อน” (Protostar)

การยุบตัวของกลุ่มก๊าซยังไม่ยุติจนกว่าอุณหภูมิของแก่นกลางดาวจะสูงถึง 15 ล้าน องศาเซลเซียส ก่อให้เกิดปฏิกิริยาเทอร์โมนิวเคลียร์ฟิวชั่น (Thermonuclear Fusion) เกิดการหลอมนิวเคลียสของธาตุไฮโดรเจนเป็นฮีเลียม เมื่อแรงดันภายในเนบิวลาสูงขึ้นจนสามารถต้านทานกับแรงโน้มถ่วงของตัวเองได้

การยุบตัวของกลุ่มก๊าซและฝุ่นจึงถึงคราวยุติลง ก่อให้เกิดสมดุลระหว่างแรงทั้งสอง ในสภาวะสมดุลนี้ ดาวฤกษ์จึงได้ถือก่อกำเนิดขึ้นอย่างสมบูรณ์ ดังนั้น เนบิวลา จึงถือเป็นอาณาเขตของการให้กำเนิดดวงดาวหรือดาวฤกษ์ดวงใหม่ในจักรวาล

ชีวิตของดวงดาว

เมื่อดาวฤกษ์ถือกำเนิดขึ้นอย่างสมบูรณ์ การต่อสู้กันของแรงโน้มถ่วงและแรงดันภายในยังคงเกิดขึ้นตลอดเวลา ดาวฤกษ์จะคงอยู่ได้เพราะสมดุลระหว่างแรงทั้งสองนี้ ช่วงชีวิตของความสมดุลที่ว่านี้ เรียกว่า “แถบกระบวนการหลัก” (Main sequence) จะคงอยู่ได้นานนับล้านๆ ปี ซึ่งถือเป็นช่วงเวลาที่ยาวนานที่สุดในชีวิตของดาวฤกษ์

ระบบสุริยะจักรวาล

การจำแนกดาวฤกษ์

มวลและอุณหภูมิของดาวฤกษ์ เป็นปัจจัยสำคัญในการแบ่งประเภทดวงดาว โดยดาวฤกษ์ถูกจำแนกตามสเปกตรัมของแสง ซึ่งแบ่งดาวฤกษ์ออกเป็น 7 ประเภท ได้แก่ O, B, A, F, G, K และ M โดยที่ O เป็นดาวฤกษ์ที่มีมวลมากที่สุดและร้อนที่สุด อุณหภูมิของดาวสามารถสูงเกินกว่า 30,000 องศาเซลเซียส ขณะที่ M เป็นดาวฤกษ์มวลเล็กที่สุดและเย็นที่สุด อุณหภูมิของดาวนั้นต่ำกว่า 3,000 องศาเซลเซียส ซึ่งอุณหภูมิของดาวฤกษ์ ยังเป็นตัวกำหนดสีของดวงดาวอีกด้วย ดาวฤกษ์ที่ร้อนจัดจะมีสีขาว-ฟ้า ส่วนดาวฤกษ์ที่มีอุณหภูมิต่ำจะมีสีส้ม-แดง

ดาวฤกษ์, ขนาดของดาวฤกษ์
ภาพแสดงขนาดของดาวฤกษ์

ตารางจำแนกประเภทของดาวฤกษ์ตามอุณหภูมิ และสี

ประเภทดาวฤกษ์ อุณหภูมิ ( ºC ) สี
O มากกว่า 30,000 ฟ้า-น้ำเงิน
B ~ 20,000 ฟ้า-ขาว
A ~ 10,000 ขาว
F ~ 7,000 ขาว-เหลือง
G ~ 6,000 เหลือง
K ~ 5,000 ส้ม
M น้อยกว่า 3,000 แดง

ความสว่างของดวงดาวขึ้นอยู่กับพลังงานที่ดาวฤกษ์ดวงนั้น ปลดปล่อยออกมา หรือ ที่เรียกว่า “กำลังส่องสว่าง” (Luminosity) รวมถึงระยะห่างระหว่างดาวฤกษ์ดวงนั้นกับโลกของเรา ดวงอาทิตย์จัดอยู่ในประเภท G2 หรือ ดาวแคระเหลือง (Yellow Dwarf) ซึ่งยังอยู่ในช่วงหลักของชีวิตดาวฤกษ์ เหลือเวลาอีกกว่าพันล้านปี ก่อนเข้าสู่ช่วงสุดท้ายของชีวิต

จุดจบของดาวฤกษ์

การมีชีวิตอยู่ของดาวฤกษ์คือการเผาไหม้ตัวเอง ดังนั้นดาวฤกษ์มวลน้อยจึงมีชีวิตยาวนาน มีแสงสว่างน้อยจากการใช้เชื้อเพลิงเผาไหม้ในอัตราที่ต่ำกว่าดาวฤกษ์มวลมาก ซึ่งจะมีอายุขัยสั้น จากการเผาไหม้และปลดปล่อยพลังงานในอัตราสูงตลอดเวลา และเมื่อปริมาณไฮโดรเจนลดน้อยลง

การยุบตัวของดวงดาวจะเกิดขึ้นอีกครั้ง หลังสูญเสียสมดุลระหว่างแรงโน้มถ่วงและแรงดันภายในของดวงดาว แก่นกลางของดาวจะมีอุณหภูมิสูงถึง 10 ล้าน องศาเซลเซียส เกิดปฏิกิริยานิวเคลียร์ฟิวชั่นภายในแก่นดาว ขณะเดียวกันอุณหภูมิที่รอบนอกของดวงดาวจะสูงขึ้นเช่นเดียวกัน ไฮโดรเจนที่พื้นผิวรอบนอกจะถูกเผาไหม้ เกิดพลังงานมหาศาล ดาวฤกษ์จะเกิดการขยายตัว จนมีขนาดใหญ่กว่าเดิมหลายเท่า และมีแสงสว่างที่มากขึ้น จนในท้ายที่สุดผิวด้านนอกของดาวจะมีอุณหภูมิลดลงและกลายเป็นสีแดง ซึ่งนักดาราศาสตร์เรียกดาวฤกษ์ที่มีขนาดใหญ่นี้ว่า “ดาวยักษ์แดง” (Red giant)

ดาวยักษ์แดง, ดาวฤกษ์, กำเนิดดาวฤกษ์, ระบบสุริยะ
ภาพเปรียบเทียบขนาดดาวยักษ์แดงในแถบเคเปลอร์กับดวงอาทิตย์ในระบบสุริยะจักรวาล

อย่างไรก็ตาม วาระสุดท้ายในชีวิตของดาวฤกษ์มีด้วยกัน 2 ลักษณะ ขึ้นอยู่กับมวลของดาวฤกษ์ดวงนั้น ดาวฤกษ์ที่มีขนาดเล็กอย่างดวงอาทิตย์ของเราจะผ่านช่วงสุดท้ายของวงจรชีวิตอย่างสงบ หลังเข้าสู่ช่วงดาวยักษ์แดง ผิวนอกของดวงดาวจะเย็นลง และสูญเสียก๊าซรอบนอกจากการเผาไหม้ภายในแก่นดาวที่ยากขึ้นหลังไฮโดรเจนหมดไป ดาวฤกษ์จะมีมวลเล็กลงแต่หนาแน่นขึ้น หรือ ที่เรียกกันว่า “ดาวแคระขาว” (White Dwarf) ในบางกรณี ดาวแคระขาวจะดึงดูดเศษซากดาวใกล้เคียงมารวมตัวกันจนเกิดการระเบิดเล็กๆ (Nova) ดาวแคระขาวจะคงอยู่อีกหลายพันล้านปี จนไม่สามารถปลดปล่อยพลังงานได้อีก และกลายเป็น “ดาวแคระดำ” (Black Dwarf) หรือ ดาวฤกษ์ที่เย็นตัวลงและดับไป

ซูเปอร์โนวา, ดาวฤกษ์, ดาว, ระบบสุริยะ
ซูเปอร์โนวา

ส่วนดาวฤกษ์ที่มีมวลมาก จุดจบของดวงดาวจะรุนแรงกว่ามากจากการระเบิดครั้งใหญ่ ที่เรียกว่า “มหานวดารา” หรือ “ซูเปอร์โนวา” (Supernova) เนื่องจากปฏิกิริยานิวเคลียร์ฟิวชั่นในช่วงสุดท้ายที่ไฮโดรเจนหมดไป ธาตุหนักตัวต่อไปในดวงดาวจะถูกเผาไหม้แทนที่ เกิดการสร้างและทำลายธาตุต่างๆ เช่น ฮีเลียม คาร์บอน นีออน ออกซิเจน และซิลิคอน จนถึงแก่นดาวที่เป็นเหล็ก ปฏิกิริยานิวเคลียร์ฟิวชั่นที่เกิดขึ้นทำให้แก่นดาวถึงจุดวิกฤต อิเล็กตรอนจะรวมตัวกับโปรตรอนเป็นนิวตรอน การยุบตัวที่เกิดขึ้นทำให้เกิดการปลดปล่อยพลังงานขนาดใหญ่ที่ระเบิดดวงดาวทั้งดวง

ดาวนิวตรอน, ดาวฤกษ์
ดาวนิวตรอน

ความร้อนจากการระเบิดก่อให้เกิดธาตุโลหะหนักกระจายไปทั่วทั้งจักรวาล เช่น ทองคำ (Ag) เงิน (Au) และยูเรเนียม (U) ซึ่งจะกลายเป็นสสารตั้งต้นให้การก่อกำเนิดดวงดาวรุ่นต่อๆ ไป จากการระเบิดจะเหลือเพียงแก่นดาวขนาดเล็กที่เรียกว่า “ดาวนิวตรอน” (Neutron Star)  อย่างไรก็ตาม ถ้ามวลของดาวมีขนาดใหญ่มากจนแรงโน้มถ่วงที่เกิดขึ้นทำให้แก่นดาวยุบตัวลงจนไม่สามารถหยุดยั้งได้อีก หลุมดำ (Black hole) จะถือกำเนิดขึ้น พร้อมสนามแรงโน้มถ่วงสูงที่แม้แต่แสงยังไม่สามารถหาทางหลบหนีออกมาได้

หลุมดำ, blackhole,
หลุมดำ

สืบค้นและเรียบเรียงโดย

คัดคณัฐ ชื่นวงศ์อรุณ


อ้างอิงข้อมูลจาก

nationalgeographic.com

องค์การ NASA 

Nationlal Astronomical Research Institute of Thailand (NARIT)

ศูนย์การเรียนรู้วิทยาศาสตร์โลกและดาราศาสตร์

NASA Space place

เรื่องแนะนำ

ยีน (Gene) มีผลแค่ไหนต่อความสูง

พ่อแม่ก็สูงนี่หน่า แต่ทำไมเราถึงตัวเตี้ย แท้จริงแล้วส่วนสูงนี่มันเกี่ยวกับ ยีน หรือว่าเกี่ยวกับสภาพแวดล้อมความเป็นอยู่กันแน่

สุนัขเปลี่ยนสีหน้าเมื่อมนุษย์ให้ความสนใจ

สีหน้าของสุนัขไม่ได้มีดีแค่ไว้สำหรับเป็นคลิปบันเทิงบนโลกออนไลน์ แต่มันยังเป็นข้อมูลสำคัญที่แสดงให้เห็นวิวัฒนาการของการเป็นสุนัขเลี้ยงอีกด้วย นักวิทยาศาสตร์ประเมินปฏิกิริยาที่แสดงออกผ่านสีหน้าของสุนัข เมื่อเผชิญกับมนุษย์และเมื่อมนุษย์หันหลังให้ พวกเขาพบว่าขณะที่สุนัขถูกมนุษย์จ้องมองพวกมันสามารถแสดงสีหน้าได้หลากหลายรูปแบบ ทั้งนี้สุนัขเป็นสัตว์ที่อยู่เคียงข้างกับมนุษย์มานาน มิตรภาพต่างสปีชีส์นี้มีอายุย้อนไปได้ถึง 30,000 ปีก่อน และสายสัมพันธ์อันดีระหว่างเราเป็นส่วนหนึ่งที่เราวิวัฒนาการร่วมกันมาเพื่อการสื่อสารที่ดีขึ้น   อ่านเพิ่มเติม : วิทยาศาสตร์ว่าด้วยความน่ารัก, ทดลองให้ปลาไหลไฟฟ้าช็อต เพื่อวิทยาศาสตร์

มาทำความรู้จักกับดาวบริวารดวงใหม่ของดาวเนปจูนอย่าง ฮิปโปแคมป์ (Hippocamp)

หลังจากซ่อนตัวอยู่ในวงโคจรของ ดาวเนปจูน อยู่นานกว่าหลายพันล้านปี ล่าสุดตอนนี้ดวงจันทร์ขนาดเล็กดวงนี้ก็ได้มีชื่อเป็นของตัวเองเป็นที่เรียบร้อย

เลเซอร์ : เทคโนโลยีเพื่อภาพคมชัดจากเบื้องบน

เลเซอร์ : เทคโนโลยีเพื่อภาพคมชัดจากเบื้องบน ภาพถ่ายดาวเทียมช่วยให้เราเห็นโลกจากเบื้องบน แต่เทคโนโลยีที่อยู่ใกล้โลกอย่าง เลเซอร์ กลับช่วยให้เรามองเห็นรายละเอียดได้มากกว่า และนี่คือที่มาของนวัตกรรมเพื่อเมืองที่อาศัยเลเซอร์ในการสร้างภาพ เทคโนโลยีสำรวจทางอากาศที่เรียกว่าไลดาร์ (LIDAR ย่อมาจาก Light Detection and Ranging) ทำงานโดยการยิงแสงเลเซอร์จากเครื่องบิน เฮลิคอปเตอร์ หรือโดรน จากนั้นเครื่องมือจะรับข้อมูลที่สะท้อนกลับจากพื้นผิวเบื้องล่าง ในอดีต ความละเอียดสูงสุดที่ได้จากไลดาร์อยู่ที่ราว 50 จุดต่อตารางเมตร แต่ทีมนักวิจัยที่มหาวิทยาลัยนิวยอร์กสามารถเพิ่มความละเอียดได้ถึง 335 จุดต่อตารางเมตร ส่งผลให้ได้ภาพจากเบื้องบนโดยเฉพาะพื้นที่ในเขตเมืองที่มีรายละเอียดมากกว่าที่ผ่านมา  ถึงขนาดเห็นรอยแตก ขอบถนน และรายละเอียดด้านหน้าของตึกรามบ้านช่อง ไลดาร์ไม่เพียงให้ภาพมุมสูง แต่ยังเผยภาพรูปทรงเรขาคณิตความละเอียดสูงของเมืองที่ดูราวกับเคลื่อนไหว ความลาดชันน้อยๆ บนทางเท้าสามารถบอกได้ว่า น้ำที่ท่วมขังจะไหลไปทางใด และอนุภาคที่รวมตัวกันเป็นกระจุกอาจหมายถึงมลพิษทางอากาศ ภาพจากไลดาร์ที่เห็นนี้มาจากย่านใจกลางเมืองดับลิน เมืองหลวงของไอร์แลนด์ “สมมุติว่าคุณทำงานด้านสาธารณสุขและรู้ว่า ย่านใดย่านหนึ่งของเมืองมีคนป่วยด้วยโรคหอบหืดมาก” เดบรา เลเฟอร์ อาจารย์ด้านสารสนเทศเขตเมืองที่มหาวิทยาลัยนิวยอร์ก บอกและเสริมว่า คุณสามารถมองหาบริเวณที่รถบรรทุกจอดติดเครื่องยนต์อยู่ มลพิษเหล่านั้นไปไหน เราจะสามารถเปลี่ยนพืชพรรณบนหลังคาอาคารต่างๆ  ปรับเปลี่ยนเส้นทางการไหลของน้ำ ไปจนถึงถนนที่รถบรรทุกใช้งาน แม้การรวบรวมข้อมูลจากทางอากาศจะมีค่าใช้จ่ายสูง แต่เครื่องสแกนไลดาร์ที่ใช้การยิงเลเซอร์สามารถติดตั้งกับอากาศยานที่ใช้งานในภารกิจอื่นๆ ได้ เช่น เฮลิคอปเตอร์ตำรวจหรือหน่วยแพทย์ฉุกเฉิน เป็นต้น […]