แรงพยุง หรือแรงลอยตัว คืออะไร และมนุษย์ประยุกต์ใช้แรงชนิดนี้อย่างไร

แรงพยุง หรือแรงลอยตัว (Buoyant Force)

เรือเดินสมุทรน้ำหนักหลายร้อยตันสามารถลอยอยู่บนผิวน้ำได้ ด้วยหลักการของความหนาแน่นและ แรงพยุง

แรงพยุง (Buoyant force) หรือ แรงลอยตัว คือแรงลัพธ์ของธรรมชาติที่เกิดจากการต่อต้านของของไหล (Fluids) ซึ่งเป็นได้ทั้งของเหลวและก๊าซ กระทำต่อวัตถุโดยรอบ หรือส่วนของวัตถุซึ่งจมอยู่ในของไหลนั้นๆ กับแรงโน้มถ่วง (Gravitational force) ของโลก ส่งผลให้วัตถุสามารถลอยตัวหรือจมลงในของไหลนั้นๆ โดยผลลัพธ์ของแรงพยุงที่มีต่อวัตถุซึ่งจมอยู่ในของไหล เกิดขึ้นได้ใน 3 ลักษณะ คือ

วัตถุลอยตัว เกิดขึ้นเมื่อแรงพยุงของของไหลมากกว่าน้ำหนักของวัตถุ และเมื่อของไหลมีความหนาแน่นมากกว่าความหนาแน่นของวัตถุ

วัตถุจมลง เมื่อแรงพยุงของของไหลน้อยกว่าน้ำหนักของวัตถุ และเมื่อของไหลมีความหนาแน่นน้อยกว่าความหนาแน่นของวัตถุ

วัตถุลอยปริ่มที่ขอบของไหล หรือที่เรียกว่า “การลอยตัวเป็นกลาง” (Neutral buoyancy) เกิดสมดุลระหว่างแรงโน้มถ่วงและแรงพยุง เมื่อแรงพยุงและน้ำหนักของวัตถุเท่ากันหรือมีค่าใกล้เคียงกัน และเมื่อของไหลมีความหนาแน่นเท่ากับความหนาแน่นของวัตถุ

แรงพยุง, แรงลอยตัว, ความหนาแน่น

ดังนั้น ความหนาแน่นจึงเป็นอีกหนึ่งปัจจัยสำคัญที่มีผลต่อการลอยตัวหรือจมลงของวัตถุในของไหล

ความหนาแน่น (Density) คือ อัตราส่วนระหว่างมวล (Mass) และปริมาตร (Volume) ของวัตถุ ซึ่งในธรรมชาติหากวัตถุมีความหนาแน่นมากกว่าย่อมมีน้ำหนักมากกว่าในปริมาตรที่เท่ากัน โดยทั่วไปแล้ว เรามักคิดว่าวัตถุที่มีน้ำหนักมาก ควรจมลงในของเหลวมากกว่าวัตถุที่มีน้ำหนักเบากว่า แต่ตามหลักการทางวิทยาศาสตร์นั้น หากวัตถุมีน้ำหนักเท่ากัน แต่มีความหนาแน่นและขนาดที่ต่างกัน หรือทำมาจากวัสดุที่ต่างกัน ล้วนส่งผลต่อการจมลงและลอยตัวขึ้นของวัตถุในของเหลว นอกจากนี้ ความหนาแน่นของของเหลวเองล้วนส่งผลต่อแรงพยุงที่เกิดขึ้นอีกด้วย

ความหนาแน่นของน้ำอยู่ที่ราว 1 กรัมต่อลูกบาศก์เซนติเมตร ขณะที่ความหนาแน่นของไม้อยู่ที่ประมาณ 0.8 กรัมต่อลูกบาศก์เซนติเมตร ซึ่งน้อยกว่าความหนาแน่นของน้ำ จึงทำให้แผ่นไม้ลอยน้ำ และในขณะที่ความหนาแน่นของเหล็กอยู่ที่ประมาณ 8 กรัมต่อลูกบาศก์เซนติเมตร ส่งผลให้เหล็กจมลงในน้ำ

กฎของอาร์คิมิดีส (Archimedes’s Principle)

การค้นพบธรรมชาติของแรงพยุง เกิดขึ้นเมื่อราว 250 ปีก่อนคริสตกาล ณ เมืองซีราคิว (Syracuse) เกาะซิซิลี (Sicily) ในประเทศอิตาลี หรือชุมชนของชาวกรีกโบราณในอดีต โดยนักปราชญ์และนักคณิตศาสตร์คนสำคัญของโลก ที่เรารู้จักกันในนามของ “อาร์คิมิดีส” (Archimedes) ได้บัญญัติกฎและพิสูจน์ข้อเท็จจริงทางวิทยาศาสตร์มากมาย นอกจากนี้ อาร์คิมิดีสยังเป็นเจ้าของประโยค “ยูเรก้า ยูเรก้า” ที่ทั่วโลกรู้จัก ซึ่งมีความหมายว่า “ค้นพบแล้ว” ในภาษากรีกโบราณ หลังการค้นพบกฎของแรงพยุงจากการลงไปแช่ในอ่างอาบน้ำ เพื่อคิดหาวิธีคำนวณปริมาตรของมงกุฎทองคำให้กษัตริย์เฮียโร (King Hiero) ที่ 2 นั่นเอง

แรงพยุง, การลอยของวัตถุ, วัตถุลอยน้ำ

อ่านเพิ่มเติมเรื่อง ความหนาแน่นของน้ำ

กฎของอาร์คิมิดีสเสนอแนวคิดเรื่องแรงพยุงไว้ว่า “วัตถุที่จมลงหรือมีบางส่วนจมอยู่ในของไหลจะมีแรงลอยตัวยกวัตถุชิ้นนั้นขึ้น โดยที่ขนาดของแรงดังกล่าวจะมีขนาดเท่ากับน้ำหนักของของไหลในปริมาตรเท่ากับปริมาตรวัตถุส่วนที่จมลงหรือถูกแทนที่” และจากหลักการนี้ ทำให้มนุษย์เข้าใจในกฎของแรงในธรรมชาติ เช่นเดียวกับการทำความเข้าใจต่อความหนาแน่นที่แตกต่างกันของของสสาร หรือที่เรียกกันว่า “ความถ่วงจำเพาะ” (Specific gravity) ในปัจจุบัน

การประยุกต์ใช้แรงพยุงในการสร้างเรือเดินสมุทร

แรงพยุงเป็นแรงที่สำคัญมากในธรรมชาติ โดยมนุษย์นำหลักการดังกล่าวมาใช้ประโยชน์ในหลากหลายด้าน โดยเฉพาะการสร้างยานพาหนะขนส่งต่างๆ เช่น เรือเดินสมุทร บอลลูน หรือแม้แต่เครื่องบิน

การสร้างเรือเพื่อใช้ในการขนส่งและการเดินทาง ส่วนใหญ่มีโครงสร้างหลักทำมาจากเหล็ก เพื่อความทนทานต่อคลื่นลมในทะเล ซึ่งในธรรมชาติ เหล็กมีความหนาแน่นมากกว่าน้ำทะเลหลายเท่า แต่มนุษย์นำกฎของอาร์คิมิดีสมาประยุกต์ใช้ในการสร้างเรือขนาดต่างๆ โดยการเพิ่มพื้นที่ผิวสัมผัสและลดความหนาแน่นของเหล็กลง ซึ่งเรือส่วนใหญ่มีขนาดใหญ่แต่ข้างในกลวง หรือมีพื้นที่ว่างสำหรับอากาศ เหล็กถูกทำให้บางลงก่อนขึ้นรูป ส่งผลให้ปริมาตรของเหล็กเพิ่มขึ้น ขณะที่มีมวลเท่าเดิม จนเหล็กมีความหนาแน่นน้อยลง รวมถึงการเพิ่มพื้นที่ผิวสัมผัสของเรือเหล็กกับน้ำทะเล ซึ่งก่อให้เกิดแรงพยุงที่มากขึ้นตามไปด้วย จนทำให้เรือขนาดใหญ่ลอยตัวในน้ำได้ในท้ายที่สุด


ข้อมูลอ้างอิง
สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สสวท.)
Department of Education and Skills and the Irish Science Teachers Association (ISTA)


เรื่องอื่นๆ ที่น่าสนใจ : ความร้อนเร่งให้สารเคมีในพลาสติกละลายปนเปื้อนอาหารเข้าสู่ร่างกาย

บรรจุภัณฑ์พลาสติก

เรื่องแนะนำ

สัตว์เลี้ยงลูกด้วยนมในทะเลสูญเสียยีนชนิดหนึ่งไป

ยีน PON1 ที่ช่วยป้องกันร่างกายจากสารพิษได้สูญหายไปในบรรดาสัตว์เลี้ยงลูกด้วยนมในทะเล เพราะเหตุผลบางประการ แตกต่างจากสัตว์เลี้ยงลูกด้วยนมบนบกที่ยังคงมียีนนี้อยู่ ทว่าการปนเปื้อนของแหล่งน้ำในปัจจุบันกำลังสร้างความกังวลให้แก่นักวิทยาศาสตร์

หน้าที่ของระบบนิเวศ (Ecosystem Function)

หน้าที่ของระบบนิเวศ (Ecosystem function) มีส่วนสนับสนุนความสมดุลของสิ่งมีชีวิตที่อยู่ในระบบนิเวศ ในระบบนิเวศ (Ecosystem) การอยู่ร่วมกันของสิ่งมีชีวิตที่หลากหลาย ทั้งกลุ่มผู้ผลิต ผู้บริโภคและผู้ย่อยสลาย ก่อให้เกิดความสัมพันธ์ที่สลับซับซ้อนระหว่างสิ่งมีชีวิตด้วยกันเอง และปฏิสัมพันธ์ต่อสภาพแวดล้อม ซึ่งส่งผลให้เกิด หน้าที่ของระบบนิเวศ ที่สำคัญยิ่ง 2 ประการ ได้แก่ การถ่ายทอดพลังงาน (Energy Flows) คือ การถ่ายทอดพลังงานผ่านความสัมพันธ์ตามลำดับขั้นของสิ่งมีชีวิตในรูปของห่วงโซ่อาหาร (Food Chain) และสายใยอาหาร (Food Web) ที่ซับซ้อน จากกระบวนการสังเคราะห์แสง (Photosynthesis) ของพืชสีเขียวหรือกลุ่มผู้ผลิตภายในระบบนิเวศ ซึ่งนำแสงสว่างและพลังงานจากดวงอาทิตย์มาใช้สร้างพลังงานเคมีในรูปของอาหาร เช่น แป้ง และน้ำตาล โดยพลังงานดังกล่าวจะถูกถ่ายทอดไปยังผู้บริโภคลำดับต่อไป จนถึงผู้ย่อยสลายในท้ายที่สุด ในทุกขั้นของการถ่ายทอดพลังงานผ่านห่วงโซ่อาหารจะเกิดการสูญเสียพลังงานส่วนใหญ่ (ร้อยละ 90) จากระบบนิเวศไปในรูปของพลังงานความร้อน จากการนำไปใช้ในกระบวนการเมแทบอลิซึม (Metabolism) ของสิ่งมีชีวิต มีพลังงานเพียงร้อยละ 10 ที่เก็บสะสมไว้ในพืชสีเขียวถูกนำมาแปรเปลี่ยนเป็นมวลชีวภาพของสัตว์กินพืช ดังนั้น ผู้บริโภคในลำดับขั้นถัดไปในห่วงโซ่อาหารจะได้รับพลังงานสะสมที่ถูกเปลี่ยนเป็นมวลชีวภาพเพียงร้อยละ 10 เท่านั้น ตามกฎ ร้อยละ 10 (Ten Percent […]

ความอุดมสมบูรณ์ของดิน และการปรับปรุงดิน

ความอุดมสมบูรณ์ของดิน และการปรับปรุงดิน จำเป็นสำหรับการเพาะปลูกพืชของมนุษย์ ดิน (Soil) คือหนึ่งในทรัพยากรทางธรรมชาติที่สำคัญต่อมนุษย์และสิ่งมีชีวิตทั้งหลายบนโลก เนื่องจากดินนับเป็นปัจจัยพื้นฐานในการดำรงชีวิตของพืช ซึ่งเป็นผู้ผลิตอาหารและแหล่งอาหารลำดับที่หนึ่ง ในระบบนิเวศ รวมถึงการเป็นแหล่งที่อยู่อาศัย แหล่งกักเก็บน้ำ และยังเป็นรากฐานของการเพาะปลูกและการทำเกษตรกรรมของมนุษย์อีกด้วย มนุษย์จึงใช้ประโยชน์จาก ความอุดมสมบูรณ์ของดิน และเรียนรู้วิธีการปรับปรุงดินให้เหมาะสมกับพืชที่เพาะปลูก ดังนั้น ความอุดมสมบูรณ์ของดิน (Soil Fertility) ทั้งในด้านขององค์ประกอบ ชนิดและปริมาณของแร่ธาตุ รวมถึงสถานะของสารอาหารต่าง ๆ ที่ปรากฏอยู่ในดิน จึงนับเป็นตัวชี้วัดถึงผลิตภาพ (Soil Productivity) หรือความสามารถในการให้ผลผลิตของพืชอีกด้วย เมื่อธาตุอาหารในดินอยู่ในรูปที่พืชสามารถนำไปใช้ประโยชน์ได้โดยตรงมีปริมาณที่เหมาะสม พืชจึงสามารถเจริญเติบโตและให้ผลผลิตได้ดี ซึ่งเป็นส่วนสำคัญของสมดุลภายในระบบนิเวศที่จำเป็นต่อการดำรงอยู่ของสิ่งมีชีวิตชนิดอื่น ๆ แต่ในปัจจุบัน การเพาะปลูกและการทำเกษตรกรรมในรูปแบบอุตสาหกรรมขนาดใหญ่ เพื่อผลิตทั้งอาหารคนและอาหารสัตว์ รวมไปถึงการเปลี่ยนแปลงการใช้ประโยชน์ที่ดิน เพื่อการพัฒนาในด้านต่าง ๆ ได้ส่งผลให้ความอุดมสมบูรณ์ของดินลดลง ดินในธรรมชาติเกิดการเปลี่ยนแปลงทั้งในด้านคุณสมบัติทางเคมี กายภาพ และชีวภาพ เช่น ปริมาณอินทรียวัตถุ (Organic Matter) ลดลง ส่งผลให้ความสามารถในการกักเก็บธาตุอาหารพืชของดินลดลง ดินมีความสามารถในการอุ้มน้ำลดลง ดินมีความเป็นกรด-ด่างเพิ่มสูงขึ้น ซึ่งส่งผลต่อการดูดซับธาตุอาหารของพืช เป็นต้น ในธรรมชาติ ดินนับเป็นแหล่งสะสมธาตุอาหารหลักของพืช มีแร่ธาตุถึง […]