ความรุนแรงของพายุ ที่เกิดขึ้นมีเกณฑ์ในการจำแนกระดับความรุนแรงอย่างไร

ความรุนแรงของพายุ ที่เกิดขึ้นบนโลก

ความรุนแรงของพายุ สามารถจำแนกได้จากความเร็วลมใกล้จุดศูนย์กลาง

พายุ (Storm) ขนาดใหญ่ที่ก่อตัวขึ้นทั้งบนภาคพื้นทวีปและในมหาสมุทร เมื่อพัฒนาจนกลายเป็นพายุหมุนเขตร้อน (Tropical Cyclone) ที่สามารถสร้างความเสียหายต่อทรัพยากรธรรมชาติ สิ่งปลูกสร้าง และสิ่งมีชีวิต บนพื้นผิวโลก  นักพยากรณ์อากาศจะจัด ความรุนแรงของพายุ ตามมาตรวัดของสำนักงานหรือกรมอุตุนิยมวิทยาในแต่ละภูมิภาคที่พายุเหล่านั้นก่อตัวขึ้น

ในเบื้องต้น พายุหมุนเขตร้อนจะถูกจัดประเภทตามหลักเกณฑ์พื้นฐาน คือ

  • พายุดีเปรสชันเขตร้อน (Tropical Depression) มีความเร็วลมสูงสุดใกล้จุดศูนย์กลางไม่เกิน 63 กิโลเมตร/ชั่วโมง
  • พายุโซนร้อน (Tropical Storm) มีความเร็วลมสูงสุดไม่เกิน 118 กิโลเมตร/ชั่วโมง
  • ไต้ฝุ่น (Typhoon) หรือ เฮอร์ริเคน (Hurricane) มีความเร็วลมสูงสุดมากกว่า 118 กิโลเมตร/ชั่วโมง
ความรุนแรงของพายุ, พายุ, ความเร็วลม,
ภาพถ่ายจากดาวเทียมสำรวจแสดงให้เห็นพายุเฮอร์ริเคนที่ก่อตัวขึ้นในมหาสมุทร

แต่เมื่อพายุหมุนเขตร้อนพัฒนาจนกลายเป็นพายุไต้ฝุ่น ไซโคลน หรือ เฮอร์ริเคน จะมีการจัดระดับความรุนแรงภายในขึ้นอีกครั้ง โดยพายุหมุนเขตร้อนที่ก่อตัวในมหาสมุทรแปซิฟิกหรือที่เรียกว่า “ไต้ฝุ่น” จะถูกจัดระดับความรุนแรงตามเกณฑ์ของคณะกรรมการไต้ฝุ่นและองค์การอุตุนิยมวิทยาโลก (ESCAP/WMO) รวมถึงกรมอุตุนิยมวิทยาของแต่ละประเทศในภูมิภาคดังกล่าว

ระดับความรุนแรง

ความเร็วลมสูงสุด (กิโลเมตร/ชั่วโมง)

ญี่ปุ่น

จีนและฮ่องกง

ทวีปแอฟริกา

ไต้ฝุ่น/ไซโคลน

119 – 156

ประมาณ 150

118 – 165

ไต้ฝุ่น/ไซโคลนกำลังแรง

157 – 193

151 – 190

166 – 212

ไต้ฝุ่น/ไซโคลนกำลังแรงมาก หรือซูเปอร์ไต้ฝุ่น/ไซโคลน

 มากกว่า หรือเท่ากับ 194

มากกว่าหรือเท่ากับ 191

มากกว่าหรือเท่ากับ 213

เช่นเดียวกับพายุหมุนเขตร้อนที่ก่อตัวขึ้นในมหาสมุทรอินเดีย อ่าวเบงกอล และทะเลอาหรับ หรือที่เรียกกันว่า “ไซโคลน” จะถูกจัดระดับความรุนแรงในเกณฑ์ที่แตกต่างกันออกไป โดยเกณฑ์การวัดความรุนแรงของทั้งไต้ฝุ่นและไซโคลน มีพื้นฐานจากการอ้างอิงความเร็วลมสูงสุดโดยประมาณของพายุ ซึ่งพัดต่อเนื่องใน 10 นาที ที่ความสูง 10 เมตร เช่นเดียวกัน

ส่วนพายุหมุนเขตร้อนที่ก่อตัวในซีกโลกเหนือแทบมหาสมุทรแอตแลนติกและมหาสมุทรแปซิฟิกตะวันออกเฉียงเหนือ หรือที่เราเรียกกันว่า “เฮอร์ริเคน” จะถูกจัดระดับความรุนแรงด้วย “มาตราเฮอร์ริเคนแซฟเฟอร์ – ซิมป์สัน” (Saffir – Simpson Hurricane Wind Scale) ซึ่งถูกกำหนดขึ้นตั้งแต่ปี ค.ศ. 1969 โดย เฮอร์เบิร์ต แซฟเฟอร์ (Herbert Saffir) และโรเบิร์ต ซิมป์สัน (Robert Simpson) ผู้อำนวยการศูนย์เฮอร์ริเคนแห่งชาติของสหรัฐอเมริกา มาตราเฮอร์ริเคนแซฟเฟอร์ – ซิมป์สันทำการจัดระดับความรุนแรง โดยการอ้างอิงความเร็วลมสูงสุดโดยประมาณของพายุ ซึ่งพัดต่อเนื่องใน 1 นาที ที่ความสูง 10 เมตร

มาตราเฮอร์ริเคนแซฟเฟอร์–ซิมป์สัน

ระดับ

ความเร็วลมสูงสุด (กิโลเมตร/ชั่วโมง)

1

119 – 153

2

154 – 177

3

178 – 208

4

209 – 251

5

มากกว่าหรือเท่ากับ 252

นอกจากพายุหมุนเขตร้อนที่ก่อตัวในมหาสมุทรแล้ว พายุทอร์นาโด (Tornado) ที่มักก่อตัวบนพื้นดินฝั่งทวีปอเมริกาและมหาสมุทรแอตแลนติกล้วนได้รับการจัดระดับความรุนแรงเช่นเดียวกัน พายุทอร์นาโดจะถูกวัดด้วยมาตรวัดฟูจิตะ (Fujita Scale) ซึ่งถูกคิดค้นขึ้นโดย ทัตสึยะ ทีโอดอร์ ฟูจิตะ (Tetsuya Theodore Fujita) และอัลเลน เพียร์สัน (Allen Pearson) หัวหน้าศูนย์ทำนายพายุแห่งชาติของสหรัฐอเมริกา (Storm Prediction Center: SPC) ตั้งแต่ปี 1971

พายุทอร์นาโดถูกจำแนกความรุนแรงไว้ 6 ระดับ คือ F0 ถึง F5 เป็นการกำหนดช่วงความเร็วลมโดยประมาณ ผ่านการคำนวณจากสภาพความเสียหายที่เกิดขึ้นบนภาคพื้นดินหลังพายุสงบลง ซึ่งในช่วงเวลานั้น การวัดความเร็วลมสูงสุดของพายุทอร์นาโดที่เกิดขึ้นจริงมีโอกาสเป็นไปได้น้อยมาก ส่งผลให้เกิดการศึกษาและพัฒนามาตราวัดฟูจิตะแบบดั้งเดิมจนกลายเป็น “มาตรวัดฟูจิตะฉบับปรับปรุง” (Enhanced Fujita Scale)

ทอร์นาโด, พายุ, ความรุนแรงของพายุ
พายุทอร์นาโดเป็นพายุที่ก่อตัวขึ้นบนพื้นทวีป

โดยมีการกำหนดช่วงความเร็วลมสูงสุดขึ้นใหม่ เนื่องจากระดับความเร็วลมที่กำหนดไว้ในมาตราวัดดั้งเดิมนั้นสูงเกินไป ทำให้มีโอกาสพบพายุทอร์นาโดในประเภท F3 (ความเร็วลมตั้งแต่ 254-332 กิโลเมตร/ชั่วโมง) หรือสูงกว่าน้อยมาก มาตราวัดฟูจิตะฉบับปรับปรุงถูกนำมาใช้อย่างแพร่หลายในสหรัฐอเมริกาและแคนาดาตั้งแต่ปี 2007 เป็นต้นมา

มาตรวัดฟูจิตะฉบับปรับปรุง (Enhanced Fujita Scale)

ระดับ

ความเร็วลมสูงสุด (กิโลเมตร/ชั่วโมง)

EF0

105 – 137

EF1

138 – 177

EF2

178 – 217

EF3

218 – 266

EF4

267 – 322

EF5

มากกว่า 322

เกร็ดความรู้ : พายุจะได้รับการตั้งชื่ออย่างเป็นทางการ ต่อเมื่อมีความเร็วลมสูงสุดมากกว่า 34 นอต หรือ 63 กิโลเมตร/ชั่วโมง

สืบค้นและเรียบเรียง

คัดคณัฐ ชื่นวงศ์อรุณ


 ข้อมูลอ้างอิง

https://www.nhc.noaa.gov/aboutsshws.php

https://www.spc.noaa.gov/faq/tornado/ef-scale.html

https://www.tmd.go.th/info/info.php?FileID=95

https://www.hydromet.gov.bz/tropical-weather/saffir-simpson-scale


เรื่องอื่นๆ ที่น่าสนใจ : ประเภทของพายุ และการกำเนิดพายุ

เรื่องแนะนำ

เสือชีตาห์คงศีรษะได้อย่างไรขณะวิ่งด้วยความเร็ว?

เสือชีตาห์ คงศีรษะได้อย่างไรขณะวิ่งด้วยความเร็ว? เป็นที่รู้กันดีว่า เสือชีตาห์ คือจ้าวแห่งความเร็ว แต่นอกเหนือจากรูปร่างเพรียวลม กล้ามเนื้ออันแข็งแรงแล้ว ยังมีบางสิ่งบางอย่างที่สำคัญอีกซึ่งร่างกายของมันต้องการอย่างมากเมื่อต้องวิ่งด้วยความเร็ว ผลการศึกษาใหม่ที่เผยแพร่เมื่อวันที่ 2 กุมภาพันธ์ 2018 ในวารสาร Scientific Reports แสดงให้เห็นว่าหูชั้นในของเสือชีตาห์นั้นมีส่วนช่วยให้การล่าเหยื่อของมันมีประสิทธิภาพมากยิ่งขึ้น และการวิจัยครั้งนี้ยังเป็นครั้งแรกที่ทีมวิจัยทำการวิเคราะห์หูชั้นในของสัตว์ในวงศ์แมวใหญ่   ว่าด้วยเรื่องหู หากคุณมองภาพสโลวโมชั่นของเสือชีตาห์ขณะกำลังวิ่ง จะเห็นได้ว่ามันสามารถคงหัวของมันให้นิ่งอยู่ได้ ซึ่งช่วยให้ดวงตาของมันจับจ้องไปที่เหยื่ออย่างไม่ให้คลาดสายตาระหว่างการล่า เพื่อที่จะเรียนรู้เกี่ยวกับโครงสร้างของกระดูกเสือชีตาห์ว่ามีส่วนช่วยในเรื่องนี้อย่างไร Camille Grohe มุ่งเป้าไปที่การศึกษาหูชั้นใน หูชั้นในเป็นอวัยวะสำคัญที่ช่วยรักษาสมดุลของร่างกาย มันประกอบไปด้วยช่องว่างที่บรรจุของเหลวและเซลล์ขนที่ทำหน้าที่เป็นเซนเซอร์รับการเคลื่อนไหวของศีรษะ ด้วยภาพถ่ายความละเอียดสูง Grohe และทีมงานของเขาสแกนกระโหลกศีรษะจำนวน 21 กระโหลก ในจำนวนนี้บางกระโหลกเป็นของสัตว์สายพันธุ์อื่นในวงศ์แมวใหญ่ มีจำนวน 7 กระโหลกที่เป็นของเสือชีตาห์ นอกจากนั้นพวกเขายังสแกนกระโหลกศีรษะของเสือชีตาห์ที่สูญพันธุ์ไปแล้วในอดีตด้วย เพื่อหาดูว่าหูชั้นในของพวกมันมีวิวัฒนาการอย่างไร ผลการตรวจสอบพวกเขาพบว่าหูชั้นในของเสือชีตาห์ไม่ได้เหมือนกับสัตว์อื่นๆ ในวงศ์แมวใหญ่ ด้วยระบบการรักษาสมดุลที่มีขนาดใหญ่ของมัน และช่องภายในหูที่ยาวกว่าส่งผลให้ความสามารถในการคงศีรษะและดวงตาของมันให้อยู่นิ่งมีมากกว่าเสืออื่นๆ “กายวิภาคภายในหูของมันสะท้อนให้เห็นถึงการตอบสนองของร่างกายต่อการเคลื่อนที่ด้วยความเร็วที่มากขึ้น” John Flynn ผู้ร่วมการวิจัยกล่าว ในระหว่างการแถลงข่าวผลการค้นพบ โดยที่สำคัญก็คือลักษณะเหล่านี้ไม่ถูกพบในเสือชีตาห์ที่สูญพันธุ์ไปแล้ว นั่นหมายความว่าความพิเศษนี้เพิ่งจะถูกพัฒนาขึ้นไม่นาน ในฐานะของสัตว์บกที่มีความรวดเร็วมากที่สุดในโลก ร่างกายของมันถูกสร้างเพื่อการวิ่งอย่างแท้จริง ด้วยน้ำหนักที่เบา กระดูกสันหลังที่ยาวและมีความยึดหยุ่น เอื้อให้มันสามารถทำความเร็วจาก […]

มื้อสุดท้ายของมนุษย์เอิตซี ที่มีชีวิตอยู่เมื่อ 5,300 ปีก่อน

นักวิทยาศาสตร์ใช้เวลากว่า 20 ปี กว่าจะหากระเพาะอาหารของมนุษย์เอิตซี (Ötzi) พบ และตอนนี้พวกเขาทราบแล้วว่าอะไรคืออาหารมื้อสุดท้ายของมัมมี่น้ำแข็งที่เคยมีชีวิตอยู่เมื่อ 5,300 ปีก่อน

ยานอินไซต์ตรวจจับแผ่นดินไหวบนดาวอังคารได้เป็นครั้งแรก

นี่คือภาพวาดของยานอินไซต์บนดาวอังคาร องค์กรอวกาศประกาศว่ายานอาจตรวจจับการแรงสั่นสะเทือนบนดาวเคราะห์สีแดง หรือ แผ่นดินไหวบนดาวอังคาร ซึ่งบันทึกได้เป็นครั้งแรก ภาพวาดโดย NASA/JPL-CALTECH นี่คือการสั่นสะเทือนของแผ่นดินครั้งแรกบนดาวเคราะห์สีแดงอย่างที่สามารถบันทึกได้ และแน่นอนว่า นี่คงไม่ใช่ครั้งสุดท้าย ยานอินไซต์ (Insight Lander) ได้ตรวจจับบันทึกเหตุการณ์แผ่นดินไหวบนดาวอังคารได้เป็นครั้งแรก ซึ่งก่อให้เกิด “แรงสั่นสะเทือน” ต่อบรรดานักวิทยาแผ่นดินไหวที่อยู่ห่างไปราว 16 ล้านกิโลเมตร และเป็นการเริ่มต้นยุคใหม่ของการศึกษาดาวเคราะห์สีแดงดวงนี้ สัญญาณอันแผ่วเบาที่ถูกตรวจจับได้เมื่อวันที่ 6 เมษายน ที่ผ่านมา คือการสั่นสะเทือนซึ่งเหล่านักวิทยาศาสตร์เชื่อว่าเกิดจากบริเวณภายในของดาวอังคาร (Martian interior) มากกว่าแรงบนพื้นผิว (Surface forces) อย่างเช่นกระแสลม อย่างไรก็ตาม นักวิจัยยังคงศึกษาข้อมูลเพื่อหาแหล่งกำเนิดของแผ่นดินไหวที่แม่นยำกว่านี้ (รับฟังคลื่นเสียงที่คาดว่าเป็นแผ่นดินไหวบนดาวอังคารที่ยานอินไซต์ตรวจจับได้ที่นี่) คลื่นที่ถูกตรวจจับได้นั้นมีขนาดเล็ก อาจเปรียบได้กับแผ่นดินไหวบนโลกที่ระดับ 2 หรือ 2.5 แมกนิจูด ซึ่งแทบไม่สามารถรู้สึกได้เลยบนพื้นผิวโลก แต่การสั่นสะเทือนนี้ได้สร้างช่วงเวลาที่สำคัญกับบรรดานักวิทยาศาสตร์ที่ทำงานร่วมกับยานอินไซต์ที่รอคอยวันนี้มานับตั้งแต่การติดตั้งเครื่องมือที่ใช้ตรวจวัดคลื่นแผ่นดินไหว (Seimometer) ไปกับตัวยานเมื่อเดือนธันวาคม ปี 2018 และได้เริ่มช่วงต้นเวลาของการสังเกตเมื่อหลายสัปดาห์ที่ผ่านมา “ผมไล่ตามแผ่นดินไหวบน ดาวอังคาร ครั้งนี้มาเกือบ 30 ปี นี่เป็นช่วงจุดสูงสุดของชีวิตในการทำงานที่ผมตามหามานาน” – บรูซ […]

สัตว์มีกระดูกสันหลัง (Vertebrate)

สัตว์มีกระดูกสันหลัง เป็นกลุ่มสัตว์ที่มีวิวัฒนาการสูงสุดในอาณาจักรสัตว์ อาณาจักรสัตว์ (Animal Kingdom) คือหนึ่งในห้าอาณาจักรของสิ่งมีชีวิตบนโลก และสิ่งมีชีวิตที่มีวิวัฒนาการสูงสุดในอาณาจักรนี้คือ สัตว์มีกระดูกสันหลัง (Vertebrate) โดยมีไขสันหลัง (Spinal Cord) หรือกระดูกสันหลัง (Vertebrae) เป็นแกนหลักที่ช่วยพยุงโครงสร้างของร่างกาย มีลักษณะกระดูกที่เรียงร้อยต่อกันเป็นข้อตามแนวยาวด้านหลังของสิ่งมีชีวิต ทำหน้าที่ปกป้องเส้นประสาทและระบบสมอง ซึ่งเป็นอวัยวะที่สำคัญต่อการเรียนรู้และพฤติกรรมของสัตว์มีกระดูกสันหลัง โครงสร้างของสัตว์มีกระดูกสันหลัง นอกจากกระดูกสันหลังและไขสันหลังซึ่งถือเป็นโครงร่างภายใน (Internal Skeleton) สัตว์มีกระดูกสันหลังส่วนใหญ่มีแขนขา 2 คู่ ซึ่งรวมไปถึงครีบของสัตว์จำพวกปลา และปีกในกลุ่มสัตว์ปีก ในสัตว์มีกระดูกสันหลัง ระบบเนื้อเยื่อของร่างกายเจริญเป็นอวัยวะต่างๆที่มีการทำงานอย่างสลับซับซ้อนและมีระบบกล้ามเนื้อ (Muscular System) จำนวนมาก ช่วยส่งเสริมให้สัตว์มีกระดูกสันหลังสามารถเคลื่อนไหวอย่างมีประสิทธิภาพ และระบบประสาทส่วนกลาง (Central Nervous System: CNS) ที่ส่งเสริมให้สัตว์มีกระดูกสันหลังสามารถเคลื่อนไหวได้หลากหลายมิติ สามารถรับรู้ความรู้สึก ประมวลผล และปรับตัว ก่อให้เกิดพฤติกรรมและการเข้าสังคมที่แตกต่างจากสิ่งมีชีวิตหรือสัตว์จำพวกอื่น วิวัฒนาการของสัตว์มีกระดูกสันหลัง จากจุดเริ่มต้นของสิ่งมีชีวิตในมหาสมุทร วิวัฒนาการเริ่มจากสิ่งมีชีวิตเซลล์เดียวไปจนกระทั่งถึงสัตว์มีกระดูกสันหลัง กลุ่มปลาออสตราโคเดิร์ม (Ostracoderm) หรือปลาไม่มีขากรรไกรที่สูญพันธุ์ไปแล้ว เป็นสัตว์มีกระดูกสันหลังกลุ่มแรกที่วิวัฒน์ขึ้นมา เมื่อประชากรสัตว์มีกระดูกสันหลังในแหล่งน้ำเพิ่มจำนวนมากขึ้น จนก่อให้เกิดการแย่งชิงพื้นที่และแหล่งอาหาร เป็นแรงผลักให้สัตว์มีกระดูกสันหลังต้องปรับตัวครั้งใหญ่เพื่อความอยู่รอด ด้วยการขึ้นมาอาศัยอยู่บนบก เกิดเป็นกลุ่มสัตว์สะเทินน้ำสะเทินบก […]