สสาร ที่เกิดขึ้นบนโลกมีทั้งหมดกี่สถานะ และเกิดการเปลี่ยนแปลงได้อย่างไร

สสาร และการเปลี่ยนแปลงสถานะ (States of Matter)

สสาร (Matter) หมายถึง สิ่งที่มีมวล (Mass) และปริมาตร (Volume) ดำรงอยู่ในพื้นที่ว่าง (Space)

โดยที่เราสามารถรับรู้ไสสารได้จากประสาทสัมผัสทั้ง 5 ดังนั้น สสาร คือทุกสิ่งที่อยู่รอบตัวเรา ไม่ว่าจะเป็นอากาศที่เราหายใจ น้ำที่เราดื่ม บ้านพักที่เราอยู่อาศัย รวมถึงไปต้นไม้และสิ่งมีชีวิตอื่นๆ รวมไปถึงร่างกายของเราเอง โดยสสารที่ได้รับการศึกษาหรือค้นคว้าทางวิทยาศาสตร์ จนทราบถึงคุณสมบัติและองค์ประกอบที่แน่ชัดแล้วจะถูกเรียกว่า “สาร” (Substance)

สถานะทั้ง 4 ของสสารในธรรมชาติ

1. ของแข็ง (solid) : สถานะของสสารที่มีรูปร่างและมีปริมาตรที่แน่นอน จากการจัดเรียงของอนุภาคองค์ประกอบภายในอย่างเป็นระเบียบและแนบชิดติดกัน มีความหนาแน่นและแรงยึดเหนี่ยวระหว่างอนุภาคสูง ถึงแม้จะมีช่องว่างขนาดเล็กระหว่างอนุภาคของสสารในสถานะของแข็ง ส่งผลให้อนุภาคสั่นไปมาได้เล็กน้อย แต่อนุภาคไม่สามารถเคลื่อนที่ไปมาได้เช่นเดียวกับสสารในสถานะอื่นๆ ดังนั้น สสารในสถานะของแข็งจึงสามารถทนทานต่อการสูญเสียรูปทรงและการเปลี่ยนแปลงในปริมาตรได้มาก เช่น เหล็ก อะลูมิเนียมและทองแดง เป็นต้น

2. ของเหลว Liquid : สถานะของสสารที่มีปริมาตรคงที่ แต่สามารถเปลี่ยนรูปร่างตามภาชนะที่ใช้บรรจุ จากการมีอนุภาคองค์ประกอบเรียงตัวอยู่ห่างจากกันเล็กน้อย ส่งผลให้แรงยึดเหนี่ยวระหว่างอนุภาคไม่สูงเท่าสสารในสถานะของแข็ง อนุภาคของของเหลวจึงสามารถเคลื่อนที่ไปมาได้ในระยะใกล้ เช่น น้ำ แอลกอฮอล์และน้ำมัน เป็นต้น

สสาร, การเปลี่ยนแปลงสถานะ
สถานะของสสาร

3. ก๊าซ (Gas) : สถานะของสสารที่มีรูปร่างและปริมาตรไม่แน่นอน สามารถเปลี่ยนแปลงไปตามภาชนะที่ใช้บรรจุ จากการมีอนุภาคองค์ประกอบเรียงตัวอยู่ห่างจากกันมาก ส่งผลให้มีความหนาแน่นและแรงยึดเหนี่ยวระหว่างอนุภาคต่ำ ก๊าซจึงสามารถเคลื่อนที่อย่างรวดเร็วไปได้ในทุกทิศทาง สามารถแพร่กระจายเต็มภาชนะที่บรรจุและสามารถเปลี่ยนแปลงรูปร่างและปริมาตรจากการถูกบีบอัดได้ง่าย เช่น อากาศ ออกซิเจน ไฮโดรเจน คาร์บอนไดออกไซด์ ก๊าซหุงต้มและไอน้ำ เป็นต้น

4. พลาสมา (Plasma) : สถานะของสสารที่เกิดจากการได้รับพลังงานมหาศาลจนอิเล็กตรอนหลุดออกมาจากอะตอม เกิดเป็นกลุ่มเมฆโปรตอน นิวตรอนและอิเล็กตรอน ซึ่งเคลื่อนไหวอย่างอิสระ มีแรงยึดเหนี่ยวระหว่างอะตอมและโมเลกุลน้อยมาก ทำให้พลาสมามีความใกล้เคียงกับสถานะของก๊าซมากกว่าสถานะอื่นๆ แต่ประจุที่เคลื่อนไหวอย่างอิสระนี้ มีพฤติกรรมและคุณสมบัติที่แตกต่างไปจากสสารอื่นๆ พลาสมามีคุณสมบัติในการนำไฟฟ้า ถึงแม้พลาสมาจะพบเห็นได้ยากในสภาวะปกติ แต่ในธรรมชาติหรือในระบบสุริยะล้วนแล้วแต่มีสสารในสถานะพลาสมาดำรงอยู่ทั้งสิ้น เช่น ฟ้าผ่า แสงเหนือ หางของดาวหาง หรือบนพื้นผิวของดวงอาทิตย์ เป็นต้น

การเปลี่ยนแปลงสถานะของสสาร

การเปลี่ยนแปลงสถานะของสสารเป็นกระบวนการที่ต้องอาศัยพลังงานจากภายนอกหรือการเปลี่ยนแปลงอย่างรุนแรงของอุณหภูมิ (Temperature) หรือความดัน (Pressure) เพื่อเข้ามาเป็นตัวการหลักในการทำลายหรือปรับเปลี่ยนโครงสร้างการจัดเรียงอนุภาคของสสาร โดยกระบวนการในการเปลี่ยนแปลงสถานะของสสารประกอบไปด้วย 8 กระบวนการ ได้แก่

สสาร, การเปลี่ยนแปลงสถานะของสสาร

สสาร, การเปลี่ยนสถานะของสสาร
โดยปกติ สสารจะเปลี่ยนสถานะเมื่อได้รับหรือปลดปล่อยความร้อน และพลังงาน

โดยกระบวนการเหล่านี้ สามารถแบ่งออกเป็น 2 ส่วน จากการนำพลังงานเข้ามาสู่ระบบ คือ “การดูดพลังงาน”  ซึ่งนำพลังงานความร้อนเข้ามาทำลายแรงยึดเหนี่ยวระหว่างอนุภาคของสสาร ทำให้อนุภาคของสสารเกิดการจับตัวกันน้อยลง เกิดช่องว่างระหว่างอนุภาคมากขึ้น ส่งผลให้สสารที่มีสถานะเป็นของแข็งหรือของเหลว สามารถเปลี่ยนสถานะไปเป็นก๊าซได้จากการได้รับพลังงานความร้อนที่มากพอ และ “การคายพลังงาน” หรือการลดอุณหภูมิลงให้ถึงจุดเหมาะสม สามารถส่งผลให้อนุภาคของสสารเกิดการบีบอัดหรือถูกยึดเหนี่ยวเข้าหากันมากขึ้น เกิดการเรียงตัวของอนุภาคที่กระจัดกระจายขึ้นใหม่ เพื่อให้เกิดช่องว่างระหว่างอนุภาคน้อยลง สสารในสถานะก๊าซหรือของเหลวจึงสามารถเปลี่ยนสถานะกลับไปเป็นของแข็งได้อีกครั้ง

สืบค้นและเรียบเรียง

คัดคณัฐ ชื่นวงศ์อรุณ


ข้อมูลอ้างอิง

ทรูปลูกปัญญา – http://www.trueplookpanya.com/blog/content/50578

สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สสวท.) – https://www.scimath.org/lesson-chemistry/item/7078-2017-05-28-02-15-42

https://www.thoughtco.com/list-of-phase-changes-of-matter-608361


เรื่องอื่นๆ ที่น่าสนใจ : เพราะเหตุใดน้ำแข็งจึงลอยน้ำ

วิทยาศาสตร์, น้ำแข็ง, ความหนาแน่น, สมบัติของน้ำ ความหนาแน่นของน้ำ

เรื่องแนะนำ

แผ่นเปลือกโลก และการเปลี่ยนแปลงทางธรณีภาค

แผ่นเปลือกโลก และการเปลี่ยนแปลงทางธรณีภาค (Lithosphere & Plate Tectonics) หลังการเย็นตัวลงของพื้นผิวโลก เมื่อ 4 พันล้านปีก่อน เกิดการยกตัวขึ้นของชั้นหินเหนือผิวน้ำจนแผ่นดินผืนแรกถือกำเนิดในอีกราว 2.5 พันล้านปีต่อมา ตั้งแต่ในอดีตจนถึงปัจจุบัน การเคลื่อนที่ของ แผ่นเปลือกโลก และมหาสมุทรไม่เคยหยุดนิ่ง ภายใต้พื้นผิวโลกมีความเคลื่อนไหวและการเปลี่ยนแปลงตลอดเวลา ก่อให้เกิดภูมิประเทศและทรัพยากรอันหลากหลาย รวมถึงปรากฏการณ์ทางธรรมชาติต่างๆ จากการศึกษาหลักฐานทางธรณีวิทยา รวมถึงความพยายามในการจัดทำแผนที่โลกของนักวิทยาศาสตร์ในอดีต ส่งผลให้เกิดการลบล้างความเชื่อที่ว่า “แผ่นดินไม่เคยเกิดการเปลี่ยนแปลง” โดยเฉพาะการเสนอทฤษฎีการเลื่อนไหลของทวีป (Theory of Continental Drift) ในปี ค.ศ.1915 โดย อัลเฟรด เวเกเนอร์  (Alfred Wegener) นักอุตุนิยมวิทยาชาวเยอรมัน ที่สังเกตเห็นถึงความสอดคล้องกันของรูปร่างชายฝั่งตะวันออกของทวีปอเมริกาใต้และชายฝั่งตะวันตกของทวีปแอฟริกา ทำให้เกิดการตั้งสมมุติฐานที่ว่า เมื่อราว 200 ล้านปีก่อน โลกประกอบด้วยแผ่นดินผืนเดียวที่เรียกว่า “มหาทวีป” หรือ “พันเจีย” (Pangaea) ซึ่งถูกล้อมรอบด้วยมหาสมุทรขนาดใหญ่ และมหาทวีปนี้ประกอบไปด้วยดินแดนลอเรเซีย (Laurasia) ทางตอนเหนือและดินแดนกอนด์วานา (Gondwana) ทางตอนใต้ จนกระทั่งมหาสมุทรแอตแลนติกเกิดการขยายตัว ทำให้แผ่นดินเคลื่อนที่และแยกตัวออกจากกัน […]

หากไม่มีเหตุการณ์อุกกาบาตพุ่งชนโลกครั้งนั้น ไดโนเสาร์จะมีชีวิตรอดมาถึงทุกวันนี้หรือเปล่า

จากหายนะ การสูญพันธุ์ของไดโนเสาร์ เมื่อ 66 ล้านปีก่อน ทำให้นักบรรพชีวินวิทยามานั่งจับเข่าคุยกันในหัวข้อ จะเกิดอะไรขึ้นหากเหตุการณ์เมื่อวันนั้นไม่เคยเกิดขึ้น

แพขยะ ในมหาสมุทรแปซิฟิก

แพขยะ ใหญ่แปซิฟิก (Great Pacific Garbage Patch) หรือแพขยะตะวันออก (Eastern Garbage Patch) คือ หนึ่งในห้าแพขยะในมหาสมุทรที่มีขนาดใหญ่ที่สุดในโลก เป็นแหล่งสะสมของขยะทางทะเล (Marine Litter) จากการเคลื่อนที่ของกระแสลมและกระแสน้ำในมหาสมุทรแปซิฟิกเหนือที่ได้พัดพาเอาเศษขยะและชิ้นส่วนพลาสติกมากมายจากในแผ่นดินมากักรวมกันไว้ จนกลายเป็นวงวนของขยะขนาดใหญ่บริเวณใจกลางมหาสมุทรแปซิฟิก (Pacific Trash Vortex) ที่ครอบคลุมพื้นที่ราว 1.6 ล้านตารางกิโลเมตร หรือมีขนาดราว 3 เท่าของประเทศฝรั่งเศส ภายในแพขยะใหญ่แปซิฟิก จากการประเมินของนักวิทยาศาสตร์ ภายในแพขยะใหญ่แปซิฟิกมีมวลของชิ้นส่วนและเศษพลาสติกประมาณ 80,000 ตัน หรือมีน้ำหนักเทียบเท่าเครื่องบินเจ็ท 500 ลำ โดยใจกลางของแพขยะมีปริมาณและความหนาแน่นของขยะสูงสุด ซึ่งหากนำการกระจายตัวของขยะรอบนอกมาคำนวณร่วมด้วยแพขยะใหญ่แปซิฟิกอาจมีน้ำหนักมากถึง 100,000 ตัน หรือมีชิ้นส่วนพลาสติกมากกว่า 1.8 ล้านล้านชิ้นลอยอยู่เหนือน้ำ อ่านเพิมเติม: แพลงก์ตอนในโลกที่ท่วมท้นไปด้วยไมโครพลาสติก โดยกว่าร้อยละ 80 ของขยะทั้งหมดมาจากกิจกรรมของมนุษย์ในแผ่นดินใหญ่ ขณะที่อีกร้อยละ 20 เป็นขยะจากเรือประมงและกิจกรรมทางทะเล ส่งผลให้แพขยะสะสมขยะมากมายหลายชนิด ทั้งอวนตกปลาเก่า เส้นเชือกขาด ตาข่ายดักปลา ขวดน้ำพลาสติก รวมถึงลังพลาสติก ตะกร้า และรองเท้าแตะ […]

สิ่งมีชีวิตดัดแปรพันธุกรรม (GMOs)

สิ่งมีชีวิตดัดแปรพันธุกรรม หรือจีเอ็มโอ (Genetically Modified Organisms: GMOs) คือ สิ่งมีชีวิตที่ได้รับการดัดแปรพันธุกรรม จากการใช้เทคโนโลยีพันธุวิศวกรรม (Genetic Engineering) หรือ เทคนิคการตัดต่อยีนที่สามารถคัดเลือกสารพันธุกรรมหรือยีน (Genes) ที่จำเพาะเจาะจงจากสิ่งมีชีวิตต่างชนิด ก่อนนำมาตัดแต่งเข้ากับสิ่งมีชีวิตเป้าหมาย เพื่อให้เกิดการผสมข้ามสายพันธุ์และก่อกำเนิดสิ่งมีชีวิตชนิดใหม่ที่มีคุณสมบัติหรือลักษณะพิเศษตามความต้องการของมนุษย์ อย่างเช่น การนำยีนที่แสดงคุณสมบัติทนทานต่อความหนาวเย็นจากปลาขั้วโลก มาผสมผสานและตัดแต่งเข้ากับยีนของมะเขือเทศ เพื่อสร้างมะเขือเทศชนิดใหม่ที่สามารถเพาะปลูกได้ในพื้นที่ซึ่งมีอากาศหนาวเย็น เป็นต้น การใช้ประโยชน์จาก สิ่งมีชีวิตดัดแปรพันธุกรรม ในปัจจุบัน เทคโนโลยีการดัดแปรพันธุกรรมได้รับการพัฒนาขึ้น โดยมีจุดประสงค์หลักในการยกระดับคุณภาพอาหาร ยา และเทคโนโลยีทางการแพทย์ เพื่อรองรับจำนวนประชากรโลกที่เพิ่มมากขึ้นในทุก ๆ วัน โดยสิ่งมีชีวิตดัดแปรพันธุกรรมถูกนำมาประโยชน์มากที่สุดในภาคอุตสาหกรรมการเกษตร โดยเฉพาะพืชผลหลักในอุตสาหกรรมอาหาร ไม่ว่าจะเป็นถั่วเหลือง ข้าวโพด มันฝรั่ง มะเขือเทศ และมะละกอ ซึ่งผ่านการดัดแปรพันธุกรรม เพื่อให้มีคุณสมบัติทนทานต่อสภาพแวดล้อม ทนต่อศัตรูพืช ทนทานต่อยาฆ่าแมลง หรือแม้แต่มีความสามารถในการเจริญเติบโตรวดเร็วขึ้น นอกจากนี้ การปรับปรุงสายพันธุ์ในพืชบางชนิดยังสามารถเพิ่มคุณสมบัติทางโภชนาการอาหาร หรือเปลี่ยนแปลงรูปร่าง ขนาด และสีสันของพืชให้แตกต่างจากสายพันธุ์ดั้งเดิมในธรรมชาติได้อีกด้วย ในอุตสาหกรรมยายังมีการใช้สิ่งมีชีวิตดัดแปรพันธุกรรมในการผลิตวัคซีนหรือยาหลากหลายชนิด อย่างเช่น อินซูลิน (Insulin) ขณะที่สัตว์ส่วนใหญ่ที่ถูกดัดแปรพันธุกรรม ถูกนำมาใช้ในงานวิจัย เพื่อเป็นต้นแบบในการศึกษาการทำงานของยีนจำเพาะที่เกี่ยวข้องกับสุขภาพและโรคภัยต่าง ๆ […]