ความหนาแน่น ของสสารคืออะไร และความหนาแน่นเปลี่ยนแปลงได้อย่างไร

ความหนาแน่น (Density) ของสสาร

ความหนาแน่น (Density) คืออัตราส่วนของมวลต่อหนึ่งหน่วยปริมาตร ซึ่งเป็นสมบัติพื้นฐานทางกายภาพของสสาร โดยวัตถุที่มีมวลในหนึ่งหน่วยพื้นที่ที่กำหนดมากเท่าไหร่ ยิ่งแสดงให้เห็นว่าวัตถุดังกล่าวมีความหนาแน่นมากเท่านั้น นอกจากนี้ ความหนาแน่นยังแปรผันตามมวลอะตอม (Atomic Mass) ของธาตุหรือมวลโมเลกุลของสารประกอบอีกด้วย

ความหนาแน่น, ความหนาแน่นของสสาร, ความหนาแน่นของสาร
ภาพแสดงของเหลวแต่ละชนิดที่มี่ความหนาแน่นต่างกัน

สูตรคำนวณความหนาแน่น

ในการคำนวณหาความหนาแน่นของสสารความหนาแน่นมักถูกแสดงผลด้วยสัญลักษณ์ p (โร) ซึ่งเป็นตัวอักษรตัวที่ 17 ในภาษากรีกโดยคำนวณผ่านความสัมพันธ์ระหว่างมวล (Mass) หรือปริมาณเนื้อของสสารที่ถูกบรรจุอยู่ภายในวัตถุต่อหนึ่งหน่วยปริมาตร (Volume)

p = m/v

โดยหน่วยของความหนาแน่นที่ผู้คนนิยมใช้กันคือ กิโลกรัมต่อลูกบาศก์เมตร (kg/m3) และกรัมต่อลูกบาศก์เซนติเมตร (g/cm3) และจากสูตรการคำนวณหาความหนาแน่นข้างต้นแสดงให้เห็นว่า ความหนาแน่นนั้นเป็นอัตราส่วนของมวลต่อปริมาตรที่ไม่ได้คำนึงถึงปริมาณของวัตถุหรือสารตั้งต้นทั้งหมดที่มีอยู่ในขณะนั้น

ดังนั้น ความหนาแน่นจึงเป็นสมบัติที่ไม่ได้ขึ้นอยู่กับปริมาณของสสาร (Intensive Property) ซึ่งโดยทั่วไป เราอาจสับสนระหว่างความหนาแน่นกับน้ำหนัก เนื่องจากวัตถุ 2 ชิ้นที่มีปริมาตรเท่ากัน ชิ้นที่มีความหนาแน่นมากกว่ามักมีน้ำหนักที่มากกว่า ซึ่งในความเป็นจริง ความหนาแน่นเป็นความสัมพันธ์ระหว่างมวลต่อปริมาตร จึงไม่สามารถหาข้อสรุปจากการพิจารณามวลหรือปริมาตรของสสารเพียงส่วนเดียว แต่ต้องพิจารณาตัวแปรทั้งสองควบคู่กันไป

อ่านเพิ่มเติม : ความหนาแน่นของน้ำ

ตารางแสดงความหนาแน่นของสสารทั่วไป

สสาร

ความหนาแน่น (g/cm3)

อากาศ

0.0013

ขนนก

0.0025

น้ำแข็ง

0.92

น้ำ

1.00

เหล็ก

7.80

ทอง

19.30

ธาตุออสเมียม(Osmium: Os)

สสารที่มีความหนาแน่นสูงสุดที่เกิดขึ้นเองตามธรรมชาติบนโลก

22.59

ธาตุออสเมียม, สสารที่มีความหนาแน่นมากที่สุดในโลก, ความหนาแน่น
แร่ธาตุออสเมียม

อย่างไรก็ตาม ความหนาแน่นของสสารบางชนิดอาจไม่คงที่ในทุกอณูหรือทุกพื้นที่ภายในเนื้อสาร อย่างเช่น อากาศในชั้นบรรยากาศโลก ซึ่งยิ่งอากาศอยู่สูงขึ้นไปเหนือพื้นดินเท่าไหร่ ความหนาแน่นของอากาศจะยิ่งลดน้อยลงเท่านั้นเช่นเดียวกับความหนาแน่นของน้ำทะเลในมหาสมุทร ความหนาแน่นของน้ำจะยิ่งสูงขึ้น เมื่อระดับความลึกของน้ำทะเลเพิ่มมากขึ้นดังนั้น สูตรการคำนวณหาความหนาแน่นของสสารข้างต้นจึงเป็นการคำนวณหาความหนาแน่นเฉลี่ยของสารโดยทั่วไป

นอกจากนี้ ความหนาแน่นของสสารยังขึ้นอยู่กับปัจจัยทางสภาวะแวดล้อมอีกด้วยเช่น อุณหภูมิ (Temperature) และความดัน (Pressure) โดยเฉพาะความหนาแน่นของก๊าซที่มักจะเปลี่ยนแปลงไปตามอุณหภูมิและความดันได้ง่ายกว่าสสารในสถานะอื่นซึ่งโดยทั่วไป วัตถุจำนวนมากจะขยายตัวเมื่อได้รับความร้อนและจากการที่วัตถุขยายตัวขึ้นนั้น ส่งผลให้ปริมาตรของวัตถุเพิ่มสูงขึ้นตามไปด้วย เมื่อปริมาตรเพิ่มมากขึ้นความหนาแน่นของวัตถุดังกล่าวจึงลดลง ซึ่งปรากฏการณ์ทางธรรมชาตินี้สามารถเกิดขึ้นได้ในสสารทุกสถานะ ทั้งที่เป็นของแข็งของเหลวและก๊าซ

ความหนาแน่น, การลอยตัว, บอลลูน
บอลลูนใช้หลักการเรื่องความหนาแน่นเพื่อให้ลอยขึ้นไปได้

ความถ่วงจำเพาะ(Specific Gravity) และการใช้ประโยชน์

จากการศึกษาและค้นคว้าเกี่ยวกับความหนาแน่นของสสาร ทำให้เกิดแนวคิดเรื่อง “ความถ่วงจำเพาะ” (Specific Gravity) หรืออัตราส่วนของความหนาแน่นของวัตถุต่อความหนาแน่นของน้ำดังนั้น วัตถุที่มีความถ่วงจำเพาะน้อยกว่า 1 (ความหนาแน่นของน้ำอยู่ที่ราว 1 กรัมต่อลูกบาศก์เซนติเมตร) จะสามารถลอยอยู่เหนือผิวน้ำได้ ขณะที่วัตถุซึ่งมีความถ่วงจำเพาะมากกว่า 1 มักจมลงใต้ผิวน้ำ มนุษย์นำแนวคิดเรื่องความหนาแน่นและความถ่วงจำเพาะมาใช้ประโยชน์มากมาย โดยเฉพาะการสร้างยานพาหนะต่างๆ เช่น เรือเดินสมุทร บอลลูน หรือเครื่องบิน นอกจากนี้ ความหนาแน่นยังใช้ในการระบุและจัดจำแนกแร่ธาตุหรือองค์ประกอบของหินต่างๆ อีกด้วย

สืบค้นและเรียงเรียงโดย
คัดคณัฐ ชื่นวงศ์อรุณ


ข้อมูลอ้างอิง

http://www.narit.or.th/index.php/astronomy-article/766-degeneration-material

https://www.visionlearning.com/en/library/General-Science/3/Density/37

https://www.thoughtco.com/what-is-density-definition-and-calculation-2698950

https://www.worldatlas.com/articles/what-is-density.html

https://il.mahidol.ac.th/e-media/ap-physics2/lesson7_1.html


เรื่องอื่นๆ ที่น่าสนใจ : สสาร และการเปลี่ยนแปลงสถานะ (States of Matter)

เรื่องแนะนำ

ทำไมอัณฑะสัตว์เลี้ยงลูกด้วยนมบางชนิดอยู่ในร่างกาย?

ย้อนกลับไปในอดีตบรรพบุรุษของสัตว์เลี้ยงลูกด้วยนมที่เติบโตในรกมีอัณฑะอยู่นอกร่างกาย แต่แล้วสัตว์กลุ่มหนึ่งกลับวิวัฒนาการให้กล่องดวงใจกลับเข้าไปอยู่ข้างใน

ฮอร์โมนพืช (Plant Hormone)

ฮอร์โมนพืช (Plant Hormone) คือสารอินทรีย์ที่พืชสร้างขึ้นเองตามธรรมชาติในบริเวณอวัยวะหรือเนื้อเยื่อส่วนใดส่วนหนึ่งของต้นพืช ก่อนทำการเคลื่อนย้ายสารดังกล่าวไปยังเนื้อเยื่อเป้าหมาย เพื่อส่งสัญญาณในการเริ่มกระบวนการสร้าง ทำการควบคุม หรือเปลี่ยนแปลงส่วนต่างๆ ของพืช ทั้งด้านการเจริญเติบโตการงอกของเมล็ด การออกดอกออกผล และการผลัดใบ รวมไปถึงการยับยั้งการเปลี่ยนแปลงทางสรีรวิทยาภายในต้นพืชนั้นๆ อีกด้วย ฮอร์โมนพืชมีอยู่ในพืชทุกชนิดทุกสายพันธุ์ในอาณาจักรพืช (Plant Kingdom) แม้แต่ในสาหร่ายหรือพืชโบราณต่างมีฮอร์โมนพืชทำหน้าที่เป็นตัวส่งสัญญาณ เพื่อควบคุมการเจริญเติบโตในด้านต่างๆ เช่นกัน ฮอร์โมนพืชแบ่งออกเป็น 5 กลุ่มด้วยกัน ได้แก่ ออกซิน (Auxin) เป็นฮอร์โมนพืชที่สร้างขึ้นจากกลุ่มเซลล์เนื้อเยื่อบริเวณยอดใบอ่อน ก่อนถูกลำเลียงไปยังเซลล์เป้าหมาย มีหน้าที่กระตุ้นเซลล์ของเนื้อเยื่อให้เกิดการขยายตัว ส่งผลให้พืชเจริญเติบโตสูงขึ้นเพิ่มขนาดใบและผล ออกซินยังมีผลต่อการยับยั้งการเจริญเติบโตของตาข้าง และช่วยป้องกันการหลุดร่วงของใบ ดอกและผล อีกทั้งยังส่งผลต่อการควบคุมการเคลื่อนไหว การตอบสนองต่อแสงและแรงโน้มถ่วงของพืชอีกด้วย ไซโทไคนิน (Cytokinin) เป็นสารกระตุ้นการแบ่งเซลล์และการเปลี่ยนแปลงของเซลล์ โดยเฉพาะในส่วนของลำต้นและราก ส่งเสริมการสร้างและการเจริญของตาข้าง การแผ่กิ่งก้านสาขา และการงอกของเมล็ด อีกทั้งยังช่วยป้องกันการสลายตัวของคลอโรฟิลล์ (Chlorophyll) ช่วยให้พืชผักผลไม้มีอายุยืนและสามารถรักษาความสดใหม่เอาไว้ได้ยาวนาน เอทิลีน (Ethylene) เป็นก๊าซที่เกิดขึ้นในกระบวนการเมแทบอลิซึม (Metabolism) ของพืชโดยส่วนมากเอทิลีนถูกสร้างขึ้นเมื่อพืชมีบาดแผลหรือเข้าสู่ภาวะร่วงโรย มีส่วนช่วยเร่งการสุกของผลไม้ กระตุ้นการออกดอก การผลัดใบตามฤดูกาล และการงอกของเมล็ดพืชบางชนิด รวมไปถึงการกระตุ้นการผลิตน้ำยาง และการเกิดรากฝอยและรากแขนงของพืชอีกด้วย กรดแอบไซซิก (Abscisic acid) เป็นสารที่ถูกสังเคราะห์ขึ้นได้ในทุกส่วนของต้นพืช […]