วัฏจักรสุริยะ คืออะไร และส่งผลกระทบถึงดาวเคราะห์โลกของเราอย่างไร

วัฏจักรสุริยะ การเปลี่ยนแปลงที่เกิดขึ้นบนดวงอาทิตย์

วัฏจักรสุริยะ คืออะไร ทำไมมนุษย์ถึงอยากศึกษาเรื่องราวของดวงอาทิตย์

วัฏจักรสุริยะ (Solar Cycle) คือ รอบของการเปลี่ยนแปลงจำนวน “จุดดับหรือจุดมืดบนดวงอาทิตย์” (Sunspot) ที่เป็นสาเหตุของแปรปรวนบนชั้นบรรยากาศด้านล่างของดวงอาทิตย์ ซึ่ง 1 รอบของวัฏจักรสุริยะมีคาบหรือระยะเวลาเฉลี่ยอยู่ที่ 11 ปี โดยครอบคลุมทั้งช่วงของการเพิ่มจำนวนขึ้นของจุดดับเรื่อยไปจนถึงจุดสูงสุดและการลดลงของจุดดับถึงจำนวนต่ำสุด และในทุก ๆ ครั้งของการขึ้นวัฏจักรใหม่ ขั้วแม่เหล็กของดวงอาทิตย์จะมีการกลับขั้วหรือสลับขั้วเหนือ-ใต้ระหว่างกัน ทำให้เกิดปรากฏการณ์ทางดาราศาสตร์มากมายที่ส่งผลต่อสภาพอวกาศ (Space Weather) และสภาพอากาศของโลก

วัฏจักรสุริยะ, ดวงอาทิตย์, จุดดับบนดวงอาทิตย์
กิจกรรมบนดวงอาทิตย์ตั้งแต่ปี 2010 ถึง 2020 / ภาพถ่าย : นาซา

วัฏจักรสุริยะและจำนวนจุดดับบนดวงอาทิตย์

ในหนึ่งรอบของวัฏจักรสุริยะ จุดดับหรือจุดมืดบนดวงอาทิตย์มักเริ่มปรากฏให้เห็นบริเวณละติจูดที่ 30 ถึง 35 องศาเหนือและใต้ ก่อนจะมีตำแหน่งเลื่อนไหลลงมาที่ละติจูดต่ำกว่าตามการหมุนรอบตัวเองของดวงอาทิตย์ จนกระทั่งเข้าใกล้เส้นศูนย์สูตรของดวงดาว ซึ่งในช่วงต่ำสุด จุดดับจะอยู่ในตำแหน่งบริเวณละติจูดที่ 7 องศาเหนือและใต้ อีกทั้ง ขนาดและจำนวนของจุดดับจะมีการเปลี่ยนแปลงไปในทุก ๆ วัน บางจุดที่มีขนาดใหญ่อาจคงอยู่ได้นานเป็นสัปดาห์ ขณะที่บางจุดที่มีขนาดเล็กอาจปรากฏขึ้นให้เห็นเพียงไม่กี่ชั่วโมงเท่านั้น

วัฏจักรสุริยะสามารถแบ่งออกเป็น 2 ช่วงหลัก คือ
• ช่วงต่ำสุด (Solar Minimum) คือ ช่วงที่อาจไม่มีจุดดับปรากฏขึ้นนานหลายวันบนดวงอาทิตย์
• ช่วงสูงสุด (Solar Maximum) คือ ช่วงที่อาจมีจุดดับปรากฏขึ้นมากกว่า 160 ถึง 200 จุด อย่างเช่น เดือนตุลาคม ปีค.ศ. 1957 มีจำนวนจุดดับเฉลี่ยมากกว่า 200 จุดปรากฏขึ้นในเดือนดังกล่าว

วัฏจักรสุริยะ, ดวงอาทิตย์, จุดดับบนดวงอาทิตย์
ช่วงสูงสุดและช่วงต่ำสุดของวัฏจักร / ภาพ : นาซา

ซึ่งในรอบ 11 ปีหรือ 1 รอบของวัฏจักร จุดดับบนดวงอาทิตย์จะใช้เวลาเฉลี่ยราว 4.8 ปี ในการเพิ่มจำนวนขึ้นจากจำนวนต่ำสุดไปจนถึงสูงสุด และใช้เวลาเฉลี่ยอีกราว 6.2 ปีที่เหลือเลือนหายไปจนกระทั่งกลับมายังจุดเริ่มต้นที่มีจำนวนจุดดับน้อยที่สุดอีกครั้ง ดังนั้น วัฏจักรแต่ละรอบจึงมีจุดเริ่มต้นจากการมีจุดดับจำนวนน้อยที่สุด ก่อนเพิ่มจำนวนขึ้นเรื่อย ๆ จุดดับจะมีจำนวนมากที่สุดในช่วงกลางวัฏจักรและลดต่ำลงอีกครั้งในช่วงปลาย แต่ในบางครั้ง จำนวนจุดดับไม่ได้เป็นไปตามวัฏจักรสุริยะที่มนุษย์กำหนดขึ้นเสียทั้งหมด โดยเฉพาะในช่วงปีค.ศ. 1645 ถึง 1715 ที่พื้นผิวของดวงอาทิตย์แทบจะไม่ปรากฏจุดดับใด ๆ ขึ้นเลย ทำให้นักวิทยาศาสตร์เรียกขานช่วงเวลาดังกล่าวว่า “ช่วงต่ำสุดมอนเดอร์” (Maunder Minimum)

แผนภูมิรูปผีเสื้อ (Butterfly Diagram) แสดงตำแหน่งการเกิดจุดดับบนดวงอาทิตย์

ผลจากการหมุนเวียนของวัฏจักรสุริยะ

เนื่องจากวัฏจักรสุริยะคือวงจรความเคลื่อนไหวของการปะทุอย่างรุนแรงบนพื้นผิวดวงอาทิตย์ จึงเป็นสาเหตุของการเกิดปรากฏการณ์ทางธรรมชาติต่าง ๆ ทั้งพายุสุริยะ (Solar Storm) เปลวสุริยะ (Solar Flare) หรือแม้แต่การปลดปล่อยก้อนมวลสารจากโคโรนา (Coronal Mass Ejection) ซึ่งความเคลื่อนไหวเหล่านี้จะรุนแรงที่สุดและมีจำนวนบ่อยครั้งที่สุดในช่วงกลางของวัฏจักร

ภาพถ่าย : นาซา

ดังนั้น การศึกษาวัฏจักรสุริยะจึงทำให้นักวิทยาศาสตร์สามารถคาดการณ์ถึงสภาวะและความเปลี่ยนแปลงของสภาพอวกาศที่จะส่งผลกระทบต่อโลกในอนาคต เนื่องจากอนุภาค คลื่นแม่เหล็กไฟฟ้า และรังสีชนิดต่าง ๆ ที่ถูกส่งออกมาจากการปะทุบนพื้นผิวดวงอาทิตย์สามารถสร้างความเสียหายต่อระบบการสื่อสารต่าง ๆ ดาวเทียม และสถานีอวกาศ รวมไปถึงชีวิตของนักบินอวกาศขณะปฏิบัติงานอยู่นอกโลก ปัจจุบันปีค.ศ. 2021 ยังอยู่ในช่วงแรกของวัฏจักรสุริยะที่ 25 ซึ่งเริ่มต้นอย่างเป็นทางการตั้งแต่เดือนธันวาคม ปีค.ศ. 2019 เป็นช่วงปีที่ดวงอาทิตย์มีความแปรปรวนค่อนข้างต่ำ มีกิจกรรมการปะทุที่ไม่รุนแรงมากนัก ซึ่งจะมีการเปลี่ยนแปลงมากขึ้นในอีก 4 ปีข้างหน้า โดยเฉพาะในช่วงเดือนกรกฎาคม ปีค.ศ. 2025 ที่จะเข้าสู่ช่วงสูงสุดของวัฏจักรสุริยะที่ 25 นี้

สืบค้นและเรียบเรียง
คัดคณัฐ ชื่นวงศ์อรุณ


ข้อมูลอ้างอิง

National Aeronautics and Space Administration (NASA) – https://www.nasa.gov/press-release/solar-cycle-25-is-here-nasa-noaa-scientists-explain-what-that-means
บีบีซี ไทย – https://www.bbc.com/thai/international-48581847
สมาคมดาราศาสตร์ไทย – http://thaiastro.nectec.or.th/library/solarstormfacts/solarstormfacts.html
National Oceanic and Atmospheric Administration (NOAA) – https://scijinks.gov/solar-cycle/


เรื่องอื่นๆ ที่น่าสนใจ : ทำไมเราจึงหลงใหลดาวอังคารได้ถึงเพียงนี้

ดาวอังคาร, สำรวจดาวอังคาร, หุ่นยนต์สำรวจ
การส่งยานอวกาศไปดาวอังคารไม่ใช่เรื่องง่าย หลายภารกิจในยุคแรกประสบความล้มเหลว แต่เมื่อปี 1997 ภารกิจ แพทไฟน์เดอร์ขององค์การนาซาลงจอดได้สำเร็จ และปล่อยรถโซเจอร์เนอร์ รถสำรวจติดล้อคันแรกบนดาวอังคาร รถหุ่นยนต์รุ่นบุกเบิกคันนี้มีบทแสดงประกอบในภาพยนตร์เรื่อง ชาวดาวอังคาร หรือ The Matian เมื่อปี 2015 (ภาพถ่าย: NASA/JPL)

เรื่องแนะนำ

เหตุผล 4 ประการที่ทําให้อีโบลายังไม่หยุดระบาด

(ภาพปก) เจ้าหน้าที่ด้านสุขภาพได้รับการฉีดสเปรย์น้ำคลอรีน หลังจากนำส่งผู้ป่วยที่คาดว่าติดเชื้อ อีโบลา ไปยังรถพยาบาล ภาพถ่ายโดย NICHOLE SOBECKI ในขณะที่การระบาดของไวรัสโควิด-19 ยังคงดำเนินอยู่ ก็ได้เกิดการระบาดของเชื้อไวรัส อีโบลา ในรอบใหม่ที่คองโกอีกครั้ง นี่คือเหตุผล 4 ประการที่โลกยังไม่สามารถหยุดเชื้อนี้ได้ เมื่อวันที่ 2 มิถุนายน องค์การอนามัยโลกได้ออกประกาศว่า สาธารณรัฐประชาธิปไตยคองโก ประเทศในภูมิภาคแอฟริกากลางการเกิดการระบาดของเชื้อไวรัสอีโบลาอีกครั้ง โดยมีผู้ติดเชื้อ 6 คน มีผู้เสียชีวิต 4 คน และยังรักษาตัวอยู่อีก 2 คน และมีความเป็นไปได้ถึงการแพร่ระบาดครั้งใหม่ในวงกว้างจึงได้มีการเฝ้าระวังสถานการณ์อย่างใกล้ชิด ย้อนกลับไปเมื่อวันที่ 17 กรกฎาคม 2019 องค์การอนามัยโลกได้ประกาศภาวะวิกฤตโรคการระบาดของเชื้ออีโบลา สาธารณรัฐประชาธิปไตยคองโกว่าเป็น ภาวะฉุกเฉินด้านสาธารณสุขระหว่างประเทศ แล้ว โดยมีผู้เสียชีวิตในคองโกมากราว 1,600 คน โดยในระหว่างปี 2014-2016 โลกทั้งโลกต่างจับจ้องและมีความกังวลในพื้นที่แอฟริกาตะวันตก เนื่องจาก การระบาดของเชื้ออีโบลา ที่ทำให้มีผู้เสียชีวิตกว่า 11,000 คน หลังจากนั้นในปี 2018 ได้มีการแพร่ระบาดครั้งที่สอง ซึ่งเริ่มขึ้นในเดือนสิงหาคม 2018 ในจังหวัดคิวูเหนือ […]

ระบบนิเวศดาวเทียม รากฐานของการพัฒนาเทคโนโลยีดาวเทียมอย่างยั่งยืน

ในโครงการระบบดาวเทียมสำรวจเพื่อการพัฒนา หรือ THEOS-2 นอกจากจะมีความโดดเด่นเรื่องดาวเทียมหลัก และดาวเทียมเล็กแล้ว ยังมีองค์ประกอบอื่นๆ ที่เกิดขึ้นภายใต้โครงการ THEOS-2 เพื่อสนับสนุนการทำงานของระบบดาวเทียม และขีดความสามารถด้านเทคโนโลยีดาวเทียมและอวกาศของประเทศไทย ระบบนิเวศดาวเทียม ในบทความนี้ เนชั่นแนล จีโอกราฟฟิก ฉบับภาษาไทย มีโอกาสได้พูดคุยกับ ดร.พรเทพ นวกิจกนก ผู้อำนวยการสำนักบริหารโครงการ THEOS-2 เกี่ยวกับระบบนิเวศต่างๆ ที่เป็นองค์ประกอบสำคัญสำหรับพัฒนาระบบดาวเทียมในประเทศไทย โดย ดร.พรเทพ ได้ให้ข้อมูลว่า ระบบนิเวศดาวเทียมประกอบด้วย 4 ระบบนิเวศหลัก ดังนี้ ระบบนิเวศดาวเทียม ระบบนิเวศที่หนึ่ง การพัฒนาโครงสร้างพื้นฐาน หนึ่งในพันธกิจหลักของ GISTDA คือการพัฒนาดาวเทียมเล็ก ดังนั้นในแง่ของความพร้อมเรื่องของโครงสร้างพื้นฐาน ไม่ว่าจะเป็นห้องปฏิบัติการดาวเทียมชื่อ GALAXI อุปกรณ์ที่จะช่วยสนับสนุนการทำงานของดาวเทียม บุคลากรที่มีความสามารถและมีศักยภาพการออกแบบ มีองค์ความรู้ในกระบวนการสร้างดาวเทียม ศูนย์ทดสอบและประกอบดาวเทียม หรือ AIT ที่ใช้สำหรับการทดสอบดาวเทียม เหล่านี้ล้วนเป็นองค์ประกอบในระบบนิเวศของการพัฒนาโครงสร้างขั้นพื้นฐานในการพัฒนาดาวเทียมของประเทศไทย นอกจากนี้ยังมีการสร้างฐานเครือข่ายเศรษฐกิจอวกาศ (space economy) ของผู้ประกอบการ โดยเปิดโอกาสในเรื่องพัฒนาเทคโนโลยีขั้นสูง เช่น ปัจจุบัน เทคโนโลยีดาวเทียมในประเทศไทยยังมีอยู่น้อยมาก ประกอบกับการลงทุนในธุรกิจนี้ต้องใช้ต้นุทนมหาศาล […]

ยานสำรวจนาซาลงจอดบนดาวอังคารสำเร็จ-พร้อมค้นหาร่องรอยสิ่งมีชีวิต

หลังจากมีช่วงเวลาอันน่าตื่นเต้นจากการลงจอดผ่านชั้นบรรยากาศอันเบาบางของดาวอังคาร หุ่นยนต์ เพอร์เซเวียแรนซ์ หรือ ‘เพอร์ซี่’ พร้อมเริ่มภารกิจค้นหาสัญญาณสิ่งมีชีวิตโบราณในที่แห่งนี้แล้ว นี่เป็นการแตะล้อลงจอดของหุ่นยนต์สำรวจตัวใหม่บนดาวอังคาร เมื่อเวลาราว 16:00 น. ของวันที่ 18 กุมภาพันธ์ ตามเวลาท้องถิ่น (หรือราว 04:00 น. วันที่ 19 กุมภาพันธ์ ตามเวลาในประเทศไทย) หุ่นยนต์ตระเวนสำรวจขนาดใหญ่ที่มีมูลค่าการสร้างกว่า 2.7 พันล้านดอลลาร์สหรัฐ (ราว 8.1 หมื่นล้านบาท) ของนาซา อย่าง เพอร์เซเวียแรนซ์ (Perseverance) ได้ลงจอดอย่างปลอดภัยบนดาวเคราะห์สีแดงหลังจากผ่านการเดินทางมาเป็นระยะทางเกือบ 500 ล้านกิโลเมตรจากบนพื้นโลก หุ่นยนต์เพอร์เซเวียแรนซ์เริ่มออกเดินทางเมื่อวันที่ 30 กรกฎาคม ปี 2020 เป็นเวลากว่า 7 เดือนที่มันล่องในอวกาศผ่านยานอากาศที่ห่อหุ้มมันไว้ราวราวกับแมลงที่มีเปลือกแข็งห่อหุ้มมันไว้ “ยืนยันการลงจอด เพอร์เซเวียแรนซ์อยู่บนพื้นผิวดาวอังคารได้อย่างปลอดภัย” Swati Mohan วิศวกรในทีมพัฒนาหุ่นยนต์เพอร์เซเวียแรนซ์ กล่าว หุ่นยนต์ที่มีน้ำหนัก 1 ตันและใช้พลังงานนิวเคลียร์ในการขับเคลื่อนอย่างเพอร์เซเวียแรนซ์เคลื่อนตัวลงสู่ชั้นบรรยากาศบางๆ ของดาวอังคาร ลงสู่แอ่งหลุมอุกกาบาตเยเซโร (Jezero Crater) […]