ระบบภูมิคุ้มกันของมนุษย์ กับเชื้อไวรัสโคโรนา นักวิทยาศาสตร์เรียนรู้อะไรจากเรื่องนี้

สิ่งที่เราได้เรียนรู้เกี่ยวกับการต่อสู้ระหว่าง ระบบภูมิคุ้มกันของมนุษย์ กับ เชื้อโควิด-19

ตลอดหนึ่งปีที่เกิดการระบาดของโรคโควิด-19 ความรู้ความเข้าใจของเราเกี่ยวกับการตอบสนองของ ระบบภูมิคุ้มกันของมนุษย์ ต่อไวรัสโคโรนาก็พุ่งสูงขึ้น แต่คำถามเพิ่มเติมคือภูมิคุ้มกันจะอยู่ได้นานเพียงใด

โลกในปี 2020

มีผู้ติดเชื้อโควิด-19 มากกว่า 80 ล้านคนและเสียชีวิตไปแล้วกว่า 1.7 ล้านคน แม้จะมีผู้เสียชีวิตจำนวนมาก แต่นักวิทยาศาสตร์ก็มีความก้าวหน้าอย่างมากเกี่ยวกับการทำความเข้าใจกับความลับอย่างหนึ่งของการแพร่ระบาด คือ ระบบภูมิคุ้มกันของมนุษย์ เหตุใดบางคนจึงฟื้นตัวได้อย่างรวดเร็วในขณะที่คนอื่น ๆ มีอาการรุนแรงของไวรัสโคโรนา

การศึกษาในปี 2020 แสดงให้เห็นว่าในหลาย ๆ กรณีร่างกายของเราตอบสนองทางภูมิคุ้มกันที่แข็งแรงและต่อเชื้อซาร์ส-โควี-2 แต่สำหรับบางคนที่มีอาการรุนแรงอาจทำให้ร่างกายทรุดลงมากกว่าที่จะช่วยเหลือได้

ความเข้าใจพื้นฐานของเราเกี่ยวกับการตอบสนองทางภูมิคุ้มกันต่อไวรัสโคโรนาเพิ่มขึ้นอย่างมีนัยสำคัญ แต่ยังคงต้องศึกษาเพิ่มเติมว่า ภูมิคุ้มกันในร่างกายอยู่ในนานเพียงใด โดยเฉพาะช่วงสถานการณ์ปัจจุบันที่มีความกังวลว่า การกลายพันธุ์ของซาร์ส-โควี-2 อาจพัฒนาความแข็งแรงจนต้านทานภูมิคุ้มกันของเราได้ นอกจากนี้ การฉีดวัคซีนให้กับบุคคลที่มีความเสี่ยงจำนวนมาก ยังเป็นเรื่องความซับซ้อนของการตอบสนองของระบบภูมิคุ้มกันมนุษย์ ซึ่งมีความสำคัญมากยิ่งขึ้นที่ต้องทำความเข้าใจ

โควิด-19, วัคซีน, ภูมิคุ้มกัน, ระบบภูมิคุ้มกัน, ระบบภูมิคุ้มกันของมนุษย์
แพทย์เก็บตัวอย่างจากเด็กชายคนหนึ่งเพื่อทำการทดสอบเชื้อโควิด-19 นอกคลินิกอัจวา ในเมืองชาห์อาลัม ประเทศมาเลเซีย เมื่อ 10 ธันวาคม 2020
ภาพถ่าย : ลิม ฮุย เต็ง, สำนักข่าวรอยเตอร์ส

เรื่องดี

ร่างกายของเราพัฒนาภูมิคุ้มกันต่อไวรัสตลอดชีวิต เช่น ไวรัสตับอักเสบเอ หรือโรคหัด ในขณะที่เชื้อเอชไอวีสามารถต้านทานภูมิคุ้มกันของร่างกายได้ตราบเท่าที่เรายังมีชีวิตอยู่

โชคดีที่ซาร์ส-โควี-2 มีลักษณะใกล้เคียงกับไวรัสตับอักเสบเอ แอนเดรีย ค็อกซ์ นักภูมิคุ้มกันไวรัสวิทยา จากมหาวิทยาลัยจอห์นฮอปกินส์ กล่าวและเสริมว่า “แม้ไม่ใช่ไวรัสที่รักษาง่ายที่สุด แต่อย่างน้อยมันไม่ได้ใกล้เคียงกับเอชไอวี

ทีเซลล์, ระบบภูมิคุ้มกัน, โควิ-19
ลักษณะของที-เซลล์ในร่างกายมนุษย์

ในเดือนมิถุนายน นักวิจัยแสดงให้เห็นเป็นครั้งแรกว่า ผู้ป่วยที่ฟื้นตัวแล้วไม่เพียงแต่สร้างแอนติบอดีที่จำเพาะต่อโคโรนาไวรัสเท่านั้น แต่ยังสร้างโปรตีนจำเพาะที่มีความสามารถเข้าทำลายเชื้อรุกรานได้ และยังกระตุ้นให้เกิดคิลเลอร์ ที-เซลล์ และเฮลเปอร์ ที-เซลล์ ในระดับที่แข็งแกร่งขึ้น

คิลเลอร์ ที-เซลล์ จดจำและทำลายเซลล์ที่ติดเชื้อ ซึ่งเป็นความเสียหายที่เกิดขึ้นโดยเจตนาเพื่อป้องกันการแพร่กระจายของไวรัส ในขณะเดียวกันเฮลเปอร์ ที-เซลล์ จะช่วยในส่วนของการเจริญเติบโตของแอนติบอดี

อเลสซานโดร เซ็ตเต นักภูมิคุ้มกันวิทยา จากสถาบันภูมิคุ้มกันวิทยาลาจอลลา ซึ่งเป็นผู้เขียนร่วมในการศึกษา กล่าวว่า “ในช่วงแรก เรามีความวิตกกังวลว่า ไวรัสจะกระตุ้นการตอบสนองของระบบภูมิคุ้มกันที่ดีได้จริงหรือไม่

ด้วยความร่วมมือกับนักภูมิคุ้มกันวิทยาอีกท่าน เชน ครอตตี โครงการนี้ได้ออกแบบส่วนผสมที่สำคัญของสารเคมีในห้องปฏิบัติการ ที่สามารถตรวจจับการตอบสนองของภูมิคุ้มกันในตัวอย่างทางชีววิทยาที่เก็บรวบรวมจากผู้ป่วยโควิด-19 ที่ฟื้นตัวแล้ว

สิ่งเหล่านี้เป็นผลลัพธ์ที่น่ายินดี แม้ว่าการรายงานพบผู้ป่วยที่ฟื้นฟูตัวได้พัฒนาแอนติบอดี แต่ยังไม่มีงานวิจัยแสดงให้เห็นว่า หากร่างกายของเรามีโปรตีนเหล่านี้จะสามารถป้องกันการติดเชื้อได้ จนกระทั่ง อเล็กซ์ เกรนนิงเกอร์ นักไวรัสวิทยาแห่งมหาวิทยาลัยวอชิงตัน และเพื่อนร่วมงานได้คิดค้นการทดลองอย่างหนึ่ง ซึ่งการศึกษาดังกล่าวแสดงให้เห็นว่า ร่างกายที่มีแอนติบอดีสามารถป้องกันการติดเชื้อได้

เรื่องร้าย

ไม่ใช่ทุกคนที่มีอาการของโรคโควิด-19 มีการตอบสนองของระบบภูมิคุ้มกัน ซึ่งเห็นได้จากตัวเลขที่น่ากลัวของการเข้ารับการรักษาในโรงพยาบาลและการเสียชีวิตทั่วโลก ในกรณีที่รุนแรง ระบบภูมิคุ้มกันอาจจะทำงานได้ไม่ดีและอาจก่อให้เกิดปัญหามากขึ้นกว่าเดิม

ไวรัสใด ๆ ที่สามารถทำให้เกิดโรคในคนได้จะต้องมีกลไกการหลบหลีกภูมิคุ้มกันที่ดีอย่างน้อยหนึ่งกลไก” ครอตตีกล่าว ซึ่งเขาคิดว่า กลยุทธ์ที่สำคัญของไวรัสซาร์ส-โควี-2 คือการหลีกเลี่ยงการตอบสนองของระบบภูมิคุ้มกันโดยธรรมชาติ ซึ่งเป็นแนวป้องกันแรก ก่อนที่ร่างกายจะพัฒนาภูมิคุ้มกันที่เฉพาะเจาะจงจากแอนติบอดีและที-เซลล์ โดยเฉพาะอย่างยิ่งโคโรนาไวรัสมีความสามารถในการหลบเลี่ยงอินเตอร์เฟอรอนประเภทที่ 1 ซึ่งเป็นสัญญาณบ่งชี้โปรตีนที่ส่งเสริมการทำงานของไวรัสในเซลล์ใกล้เคียงและกระตุ้นระบบภูมิคุ้มกันโดยกำเนิด กระบวนการนี้มักเกี่ยวข้องกับกรณีที่มีอาการรุนแรง

แต่นักวิทยาศาสตร์ยังเห็นความแปรปรวนในการตอบสนองทางภูมิคุ้มกันในกลุ่มประชากร ดังนั้นพวกเขาจึงเสนอแบบจำลองที่แตกต่างกันสำหรับกรณีที่ยากต่อการอธิบายของโควิด-19 ที่รุนแรง

 “ไวรัสสามารถหลบหลีกการตรวจจับของระบบอินเตอร์เฟอรอนประเภทที่ 1”

ซิฟ พิลไล  คณะแพทยศาสตร์ มหาวิทยาลัยฮาร์วาร์ด

ไม่ว่าโคโรนาไวรัสจะใช้วิธีใดหลบเลี่ยงภูมิคุ้มกันโดยกำเนิด แต่หากระบบภูมิคุ้มกันแข็งแรงขึ้นจากการรุกรานของไวรัส ท้ายที่สุดระบบภูมิคุ้มกันอาจตอบสนองมากเกินไปและสร้างความเสียหายต่อร่างกายเสียเอง เช่น การเกิดพายุไซโตไคน์ (สภาวะที่ระบบภูมิคุ้มกันทำงานผิดพลาด) ค็อกซ์เปรียบเทียบกับการเรียกรถดับเพลิงหนึ่งพันคันมาที่บ้านของคุณ

ปัญหาคือแม้เปลวไฟจะมอดลง แต่ความเสียหายยังคงอยู่” ค็อกซ์กล่าวและเสริมว่า “ซึ่งความเสียหายเกิดจาก คุณมีเจ้าหน้าที่ดับเพลิงนับพันคนเหยียบหญ้าในสนามหน้าบ้านของคุณ

อินากิ ซานซ์ นักภูมิคุ้มกันวิทยาจากมหาวิทยาลัยเอมโมรี ผู้ศึกษาโรคแพ้ภูมิตัวเอง ได้แสดงความเห็นว่า การศึกษากรณีที่รุนแรง บางรายมีการตอบสนองโดยเปลี่ยนระบบภูมิคุ้มกันให้ต่อต้านร่างกายของตัวเอง คล้ายกับสิ่งที่เกิดขึ้นกับโรคภูมิต้านตนเอง เช่น โรคลูปัส

มีรายงานว่า ผู้ป่วยที่รักษาตัวเป็นเวลานานแม้ว่าเชื้อโคโรนาไวรัสจะหายไปแล้วก็ตาม แต่อาจยังคงส่งผลเชื่อมโยงกับการตอบสนองของระบบภูมิคุ้มกันในผู้ใหญ่และเด็กได้บ้างเล็กน้อย

เราไม่รู้แน่ชัดว่าอะไรเป็นตัวผลักดัน แต่ลางสังหรณ์ของฉันคือ มีโรคภูมิคุ้มกันทำลายตนเอง หรือโรคอักเสบจากการอักเสบที่เกิดขึ้นหรืออาจมีการติดเชื้อในส่วนสำคัญของสมอง” อิวาซากิกล่าวและเสริมว่า ในกรณีของเด็กการอักเสบนี้เชื่อมโยงกับการติดเชื้อในลำไส้

การแก้ปัญหาที่ไม่รู้จัก

คำถามเกี่ยวกับความยาวนานของภูมิคุ้มกัน และความกังวลเกี่ยวกับจำนวนการติดเชื้อซ้ำที่มีรายงานเพิ่มขึ้น อาจยังคงมีอยู่ โดยเฉพาะอย่างยิ่งเมื่อมีความแปรปรวนในการตอบสนองของระบบภูมิคุ้มกัน แม้ว่าการศึกษาล่าสุดจากเซ็ตเตและครอตตี แสดงให้เห็นว่าประมาณร้อยละ 90 ของผู้ป่วยมีการตอบสนองหลายอย่างเกิดขึ้นหลังการติดเชื้อหกเดือน

อีกด้านหนึ่ง วัคซีนสร้างการตอบสนองของภูมิคุ้มกันที่แคบกว่าการติดเชื้อไวรัสโคโรนาตามธรรมชาติ ซึ่งก่อให้เกิดการตอบสนองทางภูมิคุ้มกันที่หลากหลายมากขึ้น อิวาซากิกล่าว นั่นอาจจำกัดอัตราการติดเชื้อซ้ำเนื่องจากผู้คนจำนวนมากได้รับการฉีดวัคซีน

นักวิทยาศาสตร๋จะพัฒนาแอนติบอดีที่แข็งแกร่งมากและมีอายุการใช้งานยาวนานขึ้น” อิวาซากิกล่าว “นั่นเป็นเหตุผลที่ฉันคิดว่าวัคซีนดีกว่าการติดเชื้อตามธรรมชาติ

วัคซีนให้การตอบสนองที่ดีกว่าเนื่องจากวัคซีนเน้นความสนใจไปยังร่างกายคุณ พิลไลกล่าวเสริม แทนที่จะกำหนดขอบเขตของเชื้อโควิด-19 และโปรตีน 26 ชนิดที่แยกจากกัน ระบบภูมิคุ้มกันของผู้ที่ได้รับวัคซีนสามารถสร้างโปรตีนที่จำเพาะต่อเชื้อเพียงชนิดเดียว ซึ่งเป็นโปรตีนที่ขัดขวางการแพร่กระจายของไวรัสโคโรนาที่เข้ามาจับและเข้าสู่เซลล์

จำนวนผู้ที่ได้รับวัคซีนในขณะนี้มีจำนวนน้อย แต่จะเพิ่มขึ้น เช่นเดียวกับความต้องการคำตอบเกี่ยวกับการตอบสนองทางภูมิคุ้มกันของพวกเขา หวังว่าการฉีดวัคซีนจะยับยั้งการแพร่เชื้อได้เร็วพอที่ไวรัสจะไม่มีโอกาสกลายพันธุ์ไปมากจนอาจส่งผลต่อการป้องกันในระยะยาว

นักวิทยาศาสตร์หวังว่า ทั้งสองสายพันธุ์ใหม่เพิ่งกลายพันธุ์ในสหราชอาณาจักร และแอฟริกาใต้จะไม่ดื้อต่อวัคซีน และเซ็ตเตกล่าวว่า ไม่น่าเป็นไปได้ที่การกลายพันธุ์จะสามารถขัดขวางการป้องกันภูมิคุ้มกันทั้งหมดที่นักวิจัยได้ตรวจพบก่อนหน้านี้

“เราไม่สามารถคาดการณ์วิวัฒนาการได้ดีไปกว่านี้อีกแล้ว” อเล็กซ์ เกรนนิงเกอร์ มหาวิทยาลัยวอชิงตัน

เกรนนิงเกอร์ กล่าว “ เราไม่สามารถคาดการณ์การวิวัฒนาการของเชื้อไวรัสได้ดีไปกว่านี้อีกแล้ว เราเห็นการกลายพันธุ์ที่เกิดขึ้น และเราสามารถตรวจสอบการกลายพันธุ์นั้นได้”

ไม่ว่าจะเป็นคำถามเกี่ยวกับการกลายพันธุ์ การติดเชื้อซ้ำหรือความทนทานของภูมิคุ้มกันในระยะยาว คำตอบอาจแตกต่างกันไปสำหรับภูมิคุ้มกันที่ได้รับวัคซีนเมื่อเทียบกับการตอบสนองของร่างกายหลังการติดเชื้อตามธรรมชาติ

เซ็ตเตกล่าวว่า “เราเห็นการตอบสนองที่ดี และเราต้องรอหกถึงแปดเดือนเพื่อดูว่า ภูมิคุ้มกันของร่างกายสามารถทนทานต่อเชื้อได้หรือไม่ ตอนนี้เราเห็นผลลัพธ์ที่ดีสำหรับวัคซีน แต่จะให้ภูมิคุ้มกันที่ดีและยั่งยืนแก่ร่างกายมนุษย์หรือไม่

เพื่ออำนวยความสะดวกในการวิจัยเกี่ยวกับการตอบสนองภูมิคุ้มกันของไวรัสโคโรนา สถาบันมะเร็งแห่งชาติจึงเป็นผู้ริเริ่มโครงการที่ได้รับการสนับสนุนจากรัฐบาลกว่า 9 พันล้านบาท ซึ่งโครงการนี้มีชื่อว่า SeroNet รวมถึงเครือข่ายของศูนย์ความเป็นเลิศทางเซรุ่มวิทยาที่ได้รับทุนพิเศษ ซึ่งค็อกซ์และซานซ์กำลังเข้าร่วมอยู่

ค็อกซ์กล่าวว่า “โครงการ SeroNet นั่นจะทำให้เราได้เข้าใจอย่างแท้จริงว่า ภูมิคุ้มกันในร่างกายมนุษยชาติกำลังพัฒนาไปในทิศทางใด

เรื่อง : เฟดอร์ คอสซาคอฟสกี้

***แปลและเรียบเรียงโดย : พชร พงศ์ยี่ล่า

โครงการนักศึกษาฝึกงาน กองบรรณาธิการ นิตยสารเนชั่นแนล จีโอกราฟฟิก ฉบับภาษาไทย


เรื่องอื่น ๆ ที่น่าสนใจ : วัคซีนโควิด-19 ความหวังและทางรอดของประชากรโลก

 

เรื่องแนะนำ

แหล่งน้ำ เกิดขึ้นได้อย่างไร แม่น้ำ และทะเลสาบ มีบทบาทอย่างไรต่อการดำรงชีวิต

น้ำ เป็นหนึ่งในองค์ประกอบสำคัญที่ก่อกำเนิดชีวิตและสร้างสมดุลของสสารบนโลก เป็นองค์ประกอบหลักของสิ่งมีชีวิต และ แหล่งน้ำ เป็นอีกหนึ่งทรัพยากรทางธรรมชาติที่สำคัญต่อการดำรงอาศัยอยู่ของทั้งมนุษย์ สัตว์และพืช ดาวเคราะห์ดวงนี้ ถูกปกคลุมด้วย แหล่งน้ำ มากถึงร้อยละ 71 หรือราว 2 ใน 3 ของพื้นที่ผิวทั้งหมด โดยมี “วัฏจักรน้ำ” (Water Cycle) ทำหน้าที่เชื่อมต่อการเปลี่ยนแปลงสถานะทางธรรมชาติและการหมุนเวียนของน้ำบนโลก ตั้งแต่เมื่อ 3.8 พันล้านปีก่อน จากการเย็นตัวลงของโลกที่ก่อให้เกิดน้ำฝนและหยาดน้ำฟ้าที่ตกลงมาสู่พื้นแผ่นดิน เกิดเป็นแหล่งน้ำตามธรรมชาติ ทั้งมหาสมุทรซึ่งรวบรวมปริมาณของน้ำบนโลกมากถึงร้อยละ 97 ธารน้ำแข็งและน้ำแข็งขั้วโลก (ร้อยละ 2) แม่น้ำ ทะเลสาบ รวมถึงน้ำในดิน (ร้อยละ 1) และน้ำ (ความชื้น) ในชั้นบรรยากาศโลก ประเภทของแหล่งน้ำธรรมชาติ   แหล่งน้ำผิวดิน (Surface Water) คือ แหล่งน้ำกว่าร้อยละ 99 บนโลก ซึ่งสะสมน้ำฝนที่ตกลงมายังพื้นดิน ไหลตามความลาดชันของสภาพภูมิประเทศ ก่อนมาขังอยู่รวมกันจนก่อให้เกิดมหาสมุทร ทะเลสาบ แม่น้ำ ลำคลอง […]

พายุโซนร้อน (Tropical Storm)

การเกิด พายุโซนร้อน การตั้งชื่อพายุ และภัยจากพายุโซนร้อน พายุโซนร้อน (Tropical Storm) คือ พายุที่ก่อตัวขึ้นเหนือน่านน้ำทะเลในมหาสมุทรแถบเส้นศูนย์สูตร มีความเร็วลมสูงสุดอยู่ในช่วง 64 ถึง 118 กิโลเมตรต่อชั่วโมง  มีขนาดเส้นผ่านศูนย์กลางมากกว่า 100 กิโลเมตร เป็นพายุหมุนเขตร้อน (Tropical Cyclone) ระยะกลางที่มีกำลังมากกว่าพายุดีเปรสชัน (Tropical Depression) แต่ยังไม่พัฒนาจนมีระดับความรุนแรงเทียบเท่าพายุไต้ฝุ่น ไซโคลน หรือเฮอร์ริเคน การเกิดพายุโซนร้อน พายุโซนร้อนก่อตัวขึ้นเหนือผิวน้ำทะเลที่มีอุณหภูมิสูงกว่า 26.5 องศาเซลเซียส เป็นพายุที่เกิดขึ้นเป็นประจำในมหาสมุทรแถบเส้นศูนย์สูตรของโลก มีรูปทรงของพายุหมุน แต่ยังไม่มีกำลังมากพอที่ก่อให้เกิดตาพายุที่ชัดเจนเหมือนพายุไต้ฝุ่นหรือเฮอร์ริเคน ความร้อนและความชื้นในอากาศเหนือน่านน้ำในมหาสมุทร จึงเป็นปัจจัยหลักในการก่อตัวและทวีกำลังแรงขึ้นของพายุโซนร้อน เมื่อพายุโซนร้อนเคลื่อนที่ขึ้นฝั่งจึงมักอ่อนกำลังลง จนกลายเป็นเพียงกลุ่มเมฆหมุนวนหรือพายุดีเปรสชันก่อนจะสลายตัวไปในที่สุด เนื่องจากปะทะเข้ากับอุณหภูมิในอากาศที่เปลี่ยนแปลงไป และไม่ได้รับพลังงานจากความร้อนและความชื้นอย่างต่อเนื่อง ตามแนวร่องกดอากาศต่ำเหนือน่านน้ำในมหาสมุทรตามเดิมอีก ในทางกลับกัน หากการก่อตัวขึ้นของพายุโซนร้อนเกิดขึ้นในมหาสมุทรห่างไกลชายฝั่ง พายุดังกล่าวมีโอกาสที่จะทวีกำลังแรงขึ้น จนสามารถพัฒนาไปเป็นพายุไต้ฝุ่นหรือเฮอร์ริเคนได้ในท้ายที่สุด การตั้งชื่อพายุ กรมอุตุนิยมวิทยาของแต่ละประเทศหรือหน่วยงานในแต่ละภูมิภาคจะเริ่มตั้งชื่อพายุอย่างเป็นทางการ เมื่อพายุดังกล่าวมีความเร็วลมสูงสุดเกิน 63 กิโลเมตรต่อชั่วโมง หรือกลายเป็น “พายุโซนร้อน” แล้วนั่นเอง โดยในแทบพื้นที่มหาสมุทรแปซิฟิกตะวันตกและทะเลจีนใต้ ประเทศไทยร่วมกับอีก 13 […]

ยานอวกาศจีน จอดบนดวงจันทร์สำเร็จเป็นครั้งแรก พร้อมเก็บตัวอย่างบนดวงจันทร์

ยานอวกาศจีน ฉางเอ๋อ-5 ขอบคุณภาพถ่ายจาก www.nasaspaceflight.com ความสำเร็จของ ยานอวกาศจีน ในครั้งนี้ทำให้ประเทศจีนเป็นประเทศที่ 3 ต่อจากสหรัฐฯ และโซเวียต ที่สามารถนำยานอวกาศลงจอดบนดวงจันทร์ได้เป็นผลสำเร็จ   ยานอวกาศฉางเอ๋อ-5 ของจีน ที่ทำภารกิจไปยังดวงจันทร์เพื่อเก็บตัวอย่างหินและชั้นดินบนดวงจันทร์กลับมายังโลกเป็นครั้งแรกในรอบ 4 ทศวรรษ ได้ลงจอดเป็นผลสำเร็จ โดยใช้เวลาเดินทาง 112 ชั่วโมง ตามแหล่งข่าวจากองค์การอวกาศของปักกิ่ง ยานอวกาศจีน ฉางเอ๋อ-5 ซึ่งตั้งชื่อตามเทพเจ้าบนดวงจันทร์ตามความเชื่อของจีนได้ลงจอดบนดวงจันทร์เมื่อวันอังคารที่ 1 ธันวาคมที่ผ่านมา โดยยานได้เข้าสู่วงโคจรของดวงจันทร์ครั้งแรกได้เป็นผลสำเร็จเมื่อวันที่ 28 พฤศจิกายน และเข้าสู่วงจรของดวงจันทร์เป็นครั้งที่ 2 เมื่อวันที่ 29 พฤศจิกายน และได้ลงจอดยังจุดที่เรียกว่า Mons Rümker พื้นที่ภูเขาไฟที่มีความซับซ้อนในพื้นที่ที่เรียกว่า Oceanus Procellarum หรือ ทะเลแห่งพายุ ซึ่งเป็นบริเวณที่ภารกิจ Apollo 12 เคยเดินทางไปลงจอดเมื่อปี 1969 เพื่อสำรวจพื้นที่และเก็บตัวอย่างหินและชั้นดินจากพื้นที่โดยรอบ เป็นจำนวน 2 กิโลกรัม (2000 กรัม) มากับยานที่อยู่ในวงโคจรซึ่งสามารถส่งตัวอย่างดังกล่าวกลับมายังโลกได้ โดยตามกำหนดการที่คาดเอาไว้ […]

ชมคลิปวิดีโอที่ช่วยไขปริศนาว่า นาร์วาฬใช้งาของมันทำอะไร

เรื่อง    ซาราห์ กิบเบนส์ ในคลิปวิดีโอที่ถ่ายจากโดรนเหนือน่านน้ำนอกชายฝั่งดินแดนนูนาวุตของแคนาดา นาร์วาฬตัวหนึ่งใช้งาของมันฟาดปลาค้อดอาร์กติกก่อนจับกินเป็นอาหาร แรงกระแทกอาจทำให้ปลามึนงงและกลายเป็นเหยื่อที่จับได้ง่ายของนาร์วาฬ แท้จริงแล้ว งาของนาร์วาฬคือฟันที่บิดเกลียวยื่นออกมาจากส่วนหัว และสามารถยาวได้เกือบถึงสามเมตร นอกจากนั้นงาของนาร์วาฬยังปกคลุมไปด้วยปลายประสาทนับพันๆ ที่ช่วยให้พวกมันรับรู้เกี่ยวกับสภาพแวดล้อมรอบตัว นาร์วาฬอาศัยอยู่ในน่านน้ำห่างไกล และเรายังรู้จักพฤติกรรมของพวกมันน้อยมาก ที่ผ่านมา นักวิทยาศาสตร์ได้แต่คาดเดาว่า นาร์วาฬใช้งาของมันทำอะไร  พฤติกรรมที่ได้รับการบันทึกไว้เป็นครั้งแรกนี้จึงช่วยไขปริศนาที่มีมาช้านานได้ แบรนดอน ลาฟอเรสต์ ผู้เชี่ยวชาญอาวุโสด้านชนิดพันธุ์และระบบนิเวศแถบอาร์กติกจากกองทุนสัตว์ป่าโลก (WWF) ประจำแคนาดา อธิบายว่า เพราะเหตุใดนาร์วาฬจึงเป็นชนิดพันธุ์ที่เรารู้จักน้อยมาก “พวกมันไม่กระโดดทิ้งตัวเหมือนวาฬชนิดอื่นๆ และค่อนข้างขี้อายครับ คลิปวิดีโอนี้จึงให้ข้อมูลใหม่เกี่ยวกับการใช้งาของมัน” ลาฟอเรสต์บอก ที่ผ่านมา ลาฟอเรสต์ซึ่งทำงานร่วมกับเจ้าหน้าที่รัฐบาลแคนาดา ใช้เวลาศึกษานาร์วาฬในถิ่นอาศัยฤดูหนาวของพวกมัน แต่ความที่ถิ่นอาศัยของพวกมันอยู่ห่างไกล การสังเกตพฤติกรรมด้วยสายตาจึงทำได้ค่อนข้างยาก มารีอาน มาร์กู นักวิจัยจากกรมประมงและมหาสมุทรของแคนาดา บอกว่า การใช้โดรนเป็นวิธีใหม่ที่ช่วยให้เราศึกษาสัตว์ผู้ลึกลับเหล่านี้ได้ เธอบอกว่า “โดรนเป็นอะไรที่น่าตื่นเต้นมาก เราสามารถเห็นอะไรที่ไม่เคยเห็นมาก่อน” ที่ผ่านมา การใช้เครื่องบินเล็กให้ภาพได้ไม่ชัดเจน และบ่อยครั้งทำให้สัตว์ที่เป็นเป้าหมายตื่นตกใจ ขณะที่คลิปวิดีโอนี้ช่วยยืนยันทฤษฎีหนึ่งเกี่ยวกับการใช้งาของนาร์วาฬ  พวกมันยังอาจใช้งาเพื่อการอื่นด้วย เช่น เจาะน้ำแข็ง ใช้เป็นอาวุธต่อสู่กัน ช่วยเรื่องการคัดเลือกทางเพศ (sexual selection) หรือเป็นเครื่องมือเกี่ยวข้องกับการใช้เสียงสะท้อน เพื่อนำทางหรือระบุตำแหน่ง (echolocation) คล้ายโซนาร์  […]