กล้องโทรทรรศน์ ในปัจจุบัน จำแนกเป็นกี่ประเภท และมีหลักการทำงานอย่างไร

กล้องโทรทรรศน์ (telescope)

การศึกษาดาราศาสตร์จำเป็นต้องอาศัยเครื่องมือที่ทันสมัยและหลากหลาย และในปัจจุบันเทคโนโลยีการสำรวจอวกาศเติบโตขึ้นอย่างรวดเร็ว หนึ่งในเครื่องมือที่นักดาราศาสตร์ใช้ศึกษาอวกาศมาอย่างยาวนานคือ กล้องโทรทรรศน์

กล้องโทรทรรศน์ (Telescope) คือ ทัศนูปกรณ์ที่สำคัญในการสังเกตการณ์ทางดาราศาสตร์ เนื่องจากวัตถุท้องฟ้าทั้งหลาย (Celestial Objects) ไม่ว่าจะเป็นดวงดาวต่าง ๆ กาแล็กซี เนบิวลา หรือหลุมดำ ต่างดำรงอยู่ในห้วงอวกาศที่มืดมิดและห่างไกลจากโลกหลายล้านกิโลเมตร

ดังนั้น กล้องโทรทรรศน์จึงถูกออกแบบมาให้สามารถดึงภาพของวัตถุท้องฟ้าเหล่านี้ให้เข้ามาใกล้ขึ้นและสว่างขึ้น รวมถึงความสามารถในการบันทึกและถ่ายทอดวัตถุท้องฟ้าในย่านสเปกตรัมอื่น ๆ ของคลื่นแม่เหล็กไฟฟ้าที่ดวงตาของมนุษย์ไม่สามารถมองเห็นได้ให้ชัดเจนยิ่งขึ้นอีกด้วย กล้องโทรทรรศน์จึงถูกเรียกโดยทั่วไปว่า “กล้องดูดาว” นั่นเอง

กล้องโทรทรรศน์

หลักการเบื้องต้น

กล้องโทรทรรศน์มีหลักการการทำงานเบื้องต้นอยู่บนพื้นฐานของการรวมแสงและการหักเหของแสงผ่านเลนส์นูนหรือกระจกเว้าที่ทำงานร่วมกัน 2 ชุด คือ

เลนส์ชุดหน้า (ใกล้วัตถุ) มีขนาดใหญ่ เรียกว่า “เลนส์วัตถุ” (Objective Lens) ทำหน้าที่รวมแสงหรือเพิ่ม “กำลังรวมแสง” ให้สามารถมองเห็นวัตถุได้มากกว่าการมองเห็นด้วยตาเปล่า

เลนส์ชุดหลัง (ใกล้ดวงตา) มีขนาดเล็ก เรียกว่า “เลนส์ตา” (Eyepiece) ทำหน้าที่ขยายภาพหรือเพิ่ม “กำลังขยาย” ให้สามารถสังเกตรายละเอียดของวัตถุท้องฟ้าได้ชัดเจนยิ่งขึ้น เช่น

กำลังขยายต่ำที่ 10 ถึง 20 เท่า เหมาะสำหรับการสำรวจกระจุกดาวขนาดใหญ่ กาแล็กซีใกล้เคียง และดาวหาง
กำลังขยายปานกลางที่ 20 ถึง 70 เท่า เหมาะสำหรับการสำรวจวัตถุท้องฟ้าโดยทั่วไป เช่น พื้นผิวดวงจันทร์ กระจุกดาวเปิด เนบิวลา และกาแล็กซี
กำลังขยายสูงที่ 70 ถึง 200 เท่า เหมาะสำหรับการสำรวจรายละเอียดของดาวเคราะห์และวัตถุขนาดเล็ก

การทำงานของเลนส์ในกล้องโทรทรรศน์มีหลักการเบื้องต้นใกล้เคียงกับเลนส์ของแว่นตาต่าง ๆ ดังนั้น หากต้องการมองเห็นวัตถุที่อยู่ไกลหรืออยู่ในที่มืดให้ชัดเจนยิ่งขึ้น เลนส์ที่ถูกนำมาใช้จึงควรมีผิวเรียบ ปราศจากตำหนิ หนา และมีขนาดใหญ่ ซึ่งการนำเลนส์ที่มีคุณสมบัติเหล่านี้มาใช้จะทำให้กล้องโทรทรรศน์มีน้ำหนักมากและเทอะทะ ดังนั้น จึงมีการนำกระจกที่เบากว่าและปรับแต่งได้ง่ายกว่าเข้ามาใช้เป็นองค์ประกอบร่วมกับเลนส์

กล้องโทรทรรศน์สามารถจำแนกออกเป็น 3 ประเภท ได้แก่

กล้องโทรทรรศน์แบบหักเหแสง (Refracting Telescope) คือ กล้องที่ใช้เลนส์นูนเป็นเลนส์รวมแสงหลัก โดยมีเลนส์ 2 ชุดขึ้นไป ได้แก่ เลนส์วัตถุซึ่งทำหน้าที่รับภาพจากวัตถุต่าง ๆ ก่อนหักเหแสงไปยังเลนส์ใกล้ตาที่ขยายภาพและถ่ายทอดภาพดังกล่าวสู่ดวงตาของเรา โดยทั่วไป กล้องโทรทรรศน์แบบหักเหแสงจะมีขนาดลำกล้องค่อนข้างยาว เนื่องจากตัวกล้องได้รวบรวมความยาวโฟกัสของเลนส์วัตถุและเลนส์ใกล้ตาเข้าด้วยกัน แต่อย่างไรก็ตาม กล้องประเภทนี้ถือว่ามีน้ำหนักค่อนข้างเบาและง่ายต่อการเคลื่อนย้าย อีกทั้ง ยังให้ภาพคมชัดที่สุดและสว่างที่สุดในบรรดากล้องโทรทรรศน์ทุกประเภท (หากมีขนาดหน้ากล้องเท่ากัน) แต่เลนส์ที่ใช้มีข้อจำกัดที่ก่อให้เกิดความคลาดสี เนื่องจากแสงบางช่วงคลื่นถูกเลนส์ดูดกลืนไปจนหมดจึงไม่เหมาะสำหรับการสำรวจเนบิวลาและกาแล็กซี

ภาพถ่าย : Celestron, LLC.

กล้องโทรทรรศน์แบบสะท้อนแสง (Reflecting Telescope) คือ กล้องที่ถูกประดิษฐ์ขึ้นสำเร็จครั้งแรก โดย เซอร์ ไอแซก นิวตัน (Sir Isaac Newton) ซึ่งทำให้กล้องโทรทรรศน์ประเภทนี้มีอีกชื่อหนึ่งว่า “กล้องโทรทรรศน์นิวโทเนียน” (Newtonian Telescope) เป็นกล้องที่ใช้กระจกราว 2 ถึง 3 ชุด สะท้อนแสงแทนการใช้เลนส์ มีกระจกเว้าทำหน้าที่รวมแสงก่อนสะท้อนไปยังกระจกราบเข้าสู่เลนส์ตา ซึ่งกระจกขนาดใหญ่ไม่จำเป็นต้องหนาเหมือนเลนส์ จึงทำให้มีน้ำหนักเบาและปรับแต่งได้ง่าย ทำให้กล้องประเภทนี้สามารถผลิตให้มีหน้ากล้องขนาดใหญ่ รับภาพและแสงได้มาก จึงเหมาะสำหรับการสังเกตการณ์วัตถุท้องฟ้าที่อยู่ห่างไกลและมีแสงสว่างน้อย เช่น เนบิวลา และกาแล็กซี กล้องโทรทรรศน์ตามหอดูดาวขนาดใหญ่จึงนิยมใช้กล้องประเภทนี้

กล้องโทรทรรศน์
ภาพถ่าย : Celestron, LLC.

กล้องโทรทรรศน์ชนิดผสม (Catadioptic Telescope) คือ กล้องโทรทรรศน์ที่อาศัยทั้งหลักการสะท้อนและการหักเหของแสง มีการใช้เลนส์ร่วมกับกระจกให้เกิดการสะท้อนแสงกลับไปมาที่สามารถช่วยลดความยาวของขนาดลำกล้องและทำให้กล้องมีน้ำหนักเบาลง อีกทั้ง ยังคงกำลังขยายดังเดิมและปรับแก้ความผิดเพี้ยนของภาพที่เกิดจากความคลาดทางความโค้งในกระจกของกล้องแบบสะท้อนแสง กล้องโทรทรรศน์ชนิดผสมมีหลายขนาด ตั้งแต่กล้องขนาดเล็กที่ใช้สำรวจวัตถุท้องฟ้า เช่น ดาวเคราะห์ เนบิวลาและกาแล็กซีที่อยู่ห่างไกลไปจนถึงกล้องโทรทรรศน์ขนาดใหญ่ที่อยู่ในหอดูดาว เป็นกล้องที่เหมาะสำหรับ การสำรวจกระจุกดาว เนบิวลา หรือกาแล็กซีที่มีแสงสว่างไม่มากนัก

ภาพถ่าย : Celestron, LLC.

นอกจากนี้ ยังมีกล้องโทรทรรศน์อีกประเภทที่ทำงานต่างจากกล้องโทรทรรศน์เชิงแสงทั้ง 3 ประเภท คือ “กล้องโทรทรรศน์วิทยุ” (Radio Telescope) ที่สามารถสังเกตการณ์ทางดาราศาสตร์ผ่านการบันทึกและวัดสัญญาณคลื่นวิทยุจากวัตถุท้องฟ้าต่าง ๆ ซึ่งกล้องประเภทนี้ สามารถปฏิบัติงานได้ตลอด 24 ชั่วโมง และไม่ได้รับผลกระทบจากการรบกวนของเมฆหมอกในชั้นบรรยากาศโลกหรือฝุ่นผงในอวกาศ แต่กล้องโทรทรรศน์วิทยุจำเป็นต้องมีพื้นที่สำหรับการรับสัญญาณขนาดใหญ่ เนื่องจากคลื่นวิทยุมีความยาวคลื่นมากกว่าคลื่นแสง อย่างเช่น กล้องโทรทรรศน์วิทยุเอฟเฟลสเบิร์ก (Effelsberg Telescope) ที่มีเส้นผ่านศูนย์กลางจานราว 100 เมตร หรือกล้องโทรทรรศน์วิทยุกรีนแบงก์ (Green Bank Telescope) ที่มีเส้นผ่านศูนย์กลางจาน 110 เมตร เป็นต้น

กล้องโทรทรรศน์
กล้องโทรทรรศน์วิทยุเอฟเฟลสเบิร์ก

สืบค้นและเรียบเรียง
คัดคณัฐ ชื่นวงศ์อรุณ


ข้อมูลอ้างอิง

NASA Space Place – https://spaceplace.nasa.gov/telescopes/en/
สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี (สสวท.) – https://fieldtrip.ipst.ac.th/resources/gistda/documents/20140929163424.pdf
ศูนย์การเรียนรู้วิทยาศาสตร์โลกและดาราศาสตร์ (LESA) – http://www.lesa.biz/astronomy/telescope/telescope-type
สมาคมดาราศาสตร์ไทย – http://thaiastro.nectec.or.th/library/article/236/


เรื่องอื่นๆ ที่น่าสนใจ : ดูดาว ที่ริมน้ำ และล่าช้างบนเนินช้างศึก

เรื่องแนะนำ

กว่าจะได้เป็นนักบินอวกาศ ต้องผ่านอะไรมาบ้าง

Anne Roemer ผู้จัดการด้านการคัดเลือก นักบินอวกาศ ของนาซาถ่ายภาพร่วมกับผู้ที่เข้าร่วมชั้นเรียนนักบินอวกาศซึ่งคัดเลือกจากผู้สมัครกว่า 18,000 คน เมื่อปี 2017 โดยนักเรียนในรุ่นปี 2017 จะจบการศึกษาในปีนี้ ภาพถ่ายโดย ROBERT MARKOWITZ, NASA มีการคัดเลือกบุคคลจากผู้สมัครหลายพันคนเข้าไปในชั้นเรียน นักบินอวกาศ ครั้งถัดไป บางคนอาจได้เดินบนดวงจันทร์ หรืออาจจะเป็นคนแรกที่ได้ประทับรอยเท้าบนดาวอังคาร มีผู้สมัครหลายพันคนกำลังแข่งขันกันเพื่อที่จะได้เป็นนักท่องอวกาศคนต่อไปของนาซา โดยเมื่อเดือนมีนาคมที่ผ่านมา มีผู้สมัครที่เปี่ยมไปด้วยความหวังถึง 12,040 ผู้หวังเป็นส่วนหนึ่งของชั้นเรียนนักบินอวกาศในครั้งต่อไป การคัดเลือกนักบินอวกาศของนาซาไม่ใช่เรื่องง่ายดาย นักบินอวกาศต้องมีทั้งระเบียบวินัยแต่ก็มีความยืดหยุ่น สามารถพร้อมเผชิญภัยแต่ก็ต้องกังวลเรื่องความปลอดภัย รวมถึงสามารถเป็นได้ทั้งผู้นำและผู้ตามได้ในเวลาเดียวกัน เพื่อที่จะหาผู้ที่สามารถผ่านคุณสมบัติ Anne Roemer ผู้จัดการด้านการคัดเลือกนักบินอวกาศ และเหล่านักบินอวกาศผู้ปฏิบัติงานต้องตรวจสอบผู้สมัครหลายพันคนเพื่อเลือกคนให้เหลือราว 12 คน ที่มีส่วนผสมของลักษณะนิสัยและประสบการณ์ที่หลากหลาย เพื่อที่จะเป็นกลุ่มคนที่พิเศษที่สุดบนโลก โดยหนึ่งในคนกลุ่มนี้อาจจะเป็นคนที่ได้เดินบนดาวอังคารเป็นคนแรก Roemer ได้ให้สัมภาษณ์กับทางเนชั่นแนล จีโอกราฟฟิก เกี่ยวกับวิธีการคัดเลือกนักบินอวกาศของนาซา สิ่งที่เธอมองหาในตัวผู้สมัคร และความคิดของเธอเกี่ยวกับการขึ้นไปอยู่ในยานอวกาศรุ่นใหม่ๆ จำนวนคนที่คุณจะเลือกเข้ามาในชั้นเรียนนักบินอวกาศครั้งต่อไปมีกี่คน เราให้ตัวเองอยู่ในสถานะที่สามารถต่อรองประนีประนอมกันได้ เพื่อที่จะทดแทนการลดจำนวนลงของนักบินอวกาศ ทั้งคนที่ออกจากสำนักงานของเรา, คนที่เกษียณไป, คนที่บอกกับเราว่าไม่อยากบินอีกแล้ว และเหตุผลอื่นๆ เราเลยประมาณจำนวนรับคร่าวๆ อยู่ที่ […]

เรื่องราวอัศจรรย์ของต้นไม้ที่ได้ท่องอวกาศ และกำลังยืนต้นอยู่บนพื้นโลก

ต้นไม้ดวงจันทร์ เหล่านี้เติบโตขึ้นจากเมล็ดพันธุ์นับร้อยเมล็ดที่ได้ไปท่องอวกาศกับยานอะพอลโล 14 และกำลังยืนต้นอยู่บนโลก

ลูกเห็บ (hail) เกิดจากอะไร

ลูกเห็บ ตกในพื้นที่ใจกลางกรุง ช่วงที่มีฝนฟ้าคะนองในเดือนตุลาคม เมื่อวันที 4 ตุลาคม 2019 ช่วงเวลาประมาณ 12.00 น. เกิดฝนฟ้าคะนองในหลายพื้นที่ของกรุงเทพมหนาคร และมีรายงานจากเฟซบุ๊กแฟนเพจ JS100 Radio ว่า มี ลูกเห็บ ตกในเขตประตูน้ำ ใจกลางกรุงเทพมหานคร ลูกเห็บคงไม่ใช่เรื่องแปลกใหม่อะไร แล้วลูกเห็บเกิดขึ้นได้อย่างไร ลูกเห็บเกิดจากมวลอากาศร้อนที่ลอยตัวสูงขึ้น และพัดพาเม็ดฝนลอยขึ้นไปปะทะกับมวลอากาศเย็นด้านบน มักเกิดขึ้นในเมฆคิวมูโลนิมบัส (cumulonimbus clouds) จากนั้น เม็ดฝนจับตัวเป็นเม็ดน้ำแข็งซึ่งตกลงมาเจอมวลอากาศร้อนที่อยู่ด้านล่าง ความชื้นจะเข้าไปห่อหุ้มเม็ดน้ำแข็งให้เพิ่มขนาดใหญ่ขึ้น อ่านเพิ่มเติมเรื่อง เมฆชนิดต่างๆ ในชั้นบรรยากาศ จากนั้นกระแสลมก็พัดพาเม็ดน้ำแข็งวนซ้ำไปซ้ำมาหลายครั้งระหว่างชั้นมวลอากาศร้อนและมวลอากาศเย็นภายในกลุ่มเมฆ จนกลายเป็นเม็ดน้ำแข็งมีน้ำหนักมากขึ้น และกระแสลมไม่สามารถพยุงไว้ได้จึงตกลงมายังพื้นดิน ลูกเห็บจะมีขนาดเส้นผ่านศูนย์กลางประมาณ 2-3 มิลลิเมตร หรือไม่เกิน 25 มิลลิเมตร เคยมีบันทึกลูกเห็บที่มีขนาดใหญ่ที่สุดในบันทึกของสหรัฐอเมริกา มีขนาดเส้นผ่านศูนย์กลางที่ยาวถึง 8 นิ้ว และมีน้ำหนักเกือบ 2 ปอนด์ พบที่เมืองวิเวียน รัฐเซาท์ดาโกทา ในปี 2010 หากเราลองหยิบลูกเห็บมาดู เราจะเห็นลักษณะภายในของลูกเห็บเป็นลักษณะวงชั้นของน้ำแข็งลักษณะคล้ายหัวหอม นั่นเพราะว่า […]